

Energized Text Books facilitate the students in understanding the concepts clearly, accurately and effectively. Content in the QR Codes can be read with the help of any smart phone or can as well be presented on the Screen with LCD projector/K-Yan projector. The content in the QR Codes is mostly in the form of videos, animations and slides, and is an additional information to what is already there in the text books.

This additional content will help the students understand the concepts clearly and will also help the teachers in making their interaction with the students more meaningful. At the end of each chapter, questions are provided in a separate QR Code which can assess the level of learning outcomes achieved by the students. We expect the students and the teachers to use the content available in the QR Codes optimally and make their class room interaction more enjoyable and educative.

Let us know how to use QR codes

In this textbook, you will see many printed QR (Quick Response) codes, such as
Use your mobile phone or tablet or computer to see interesting lessons, videos, documents, etc. linked to the QR code.
Step Description
A. Use Android mobile phone or tablet to view content linked to QR Code:
Click on Play Store on your mobile/tablet.
In the search bar type DIKSHA.
(4) Dissha - Matona Teechers Plation-
It Me:-23 +1 mationt

will appear on your screen.

Click Install

After successful download and installation, Click Open
Choose your prefered Language - Click English
Click Continue
Select Student/ Teacher (as the case may be) and Click on Continue
 OR
Click on the search icon 䌦 and type the code printed below the QR code, in the search bar (A list of linked topics is displayed
Click on any link to view the desired content

Ψ se Computer to view content linked to QR code:

Go to https://diksha.gov.in/telangana

Click on Explore DIKSHA-TELANGANA
Enter the code printed below the QR code in the browser search bar (
A list of linked topics is displayed
Click on any link to view the desired content

TEXTBOOK DEVELOPMENT \& PUBLISHING COMMITTEE

Chief Production Officer
Smt.B. Seshu Kumari,Director, SCERT, Hyderabad.

Executive Chief Organiser
Sri. B. Sudhakar, Director, Govt. Text Book Press, Hyderabad.

 Organising Incharge

Dr. Nannuru Upender Reddy,
Prof. Curriculum \& Text Book Department, SCERT, Hyderabad.

$$
\begin{aligned}
& \text { واك }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Asst. Organising Incharge }
\end{aligned}
$$

Sri. K. Yadagiri, Lecturer, SCERT, Hyderabad.

QR CODE TEAM

Published by The Government of Telangana, Hyderabad
تبر با

تاצّن 6 اتخام كريّ
الچپ حزّ

Editorial Board

Dr. Kamal Mahendroo, Professor
Vidya Bhavan Educational Resource Centre, Udaipur, Rajasthan

Dr. Snigdha Das,
Vidya Bhavan Educational Resource Centre, Udaipur, Rajasthan.

Dr. B. Krishnarajulu Naidu, Professor in Physics (Retd) Osmania University,Hyderabad.

Dr. M. Adinarayana, Professor of Chemistry (Retd) Osmania University,Hyderabad.

Dr. Nannuru Upender Reddy, Professor,
C\&T Dept., SCERT, Hyderabad.

Co-ordinators

Sri. J. Raghavulu,
Professor, SCERT
Sri. M. Ramabrahmam, Lecturer, IASE, Masab Tank, Hyderbad.

Sri. J. Vivekvardhan, S.A., SCERT

Smt. B.M. Sakunthala, Lecturer, SCERT

Dr. T.V.S. Ramesh,
S.A., UPS Potlapudi, Nellore.

Text book development commitee

Smt. B. Seshu Kumari Dr. Nannuru Upender Reddy

Director,
S.C.E.R.T.,

Hyderabad.

Professor,
C \& T Dept., S.C.E.R.T., Hyderabad.

Sri. B. Sudhakar
Director
Govt. Textbook Printing Press, Hyderabad.

© Government of Telangana, Hyderabad.

First Published 2012
New Impressions 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022

All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means without the prior permission in writing of the publisher, nor be otherwise circulated in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser. The copy right holder of this book is the Director of School Education, Hyderabad, Telangana.

This Book has been printed on 70 G.S.M. Maplitho Title Page 200 G.S.M. White Art Card
2022-23 \square

Free distribution by Govt. of TS. 2022-23

Printed in India
 for the Director Telangana Govt. Text Book Press,

Mint Compound, Hyderabad,
Telangana.

AUTHORS

Dr. T.V.S. Ramesh, S.A.
U.P.S., Potlapudi, Nellore.

Dr. K. Suresh, S.A.
Z.P.H.S., Pasaragonda, Warangal.

Dr. S. Vishnu Vardhan Reddy, S.A.
Z.P.H.S., Kadthal, Mahaboobnagar

Sri Noel Joseph, H.M.
St. Joseph's HS, Ramagundam, Karimnagar.
Sri Sanjeev Kumar, S.A.
Z.P.H.S., Amdapur, Nizamabad.

Sri L.V. Chalapathi Rao, S.A.
A.P.R. School, Nizampatnam, Guntur.

Sri M. Ramabrahmam, Lecturer
Govt. I.A.S.E., Masabtank, Hyderabad.
Dr. P. Shankar, Lecturer
D.I.E.T., Warangal.

Sri J. Vivekavardhan, S.A.
S.C.E.R.T., Hyderabad.

Sri Y. Venkata Reddy, S.A.
Z.P.H.S., Chivemla, Nalgonda.

Sri D. Madhusudhan Reddy, S.A.
Z.P.H.S., Munagala, Nalgonda.

Sri A. Nagaraju Sekhar, S.A.
Z.P.H.S., Chatakonda, Khammam.

ILLUSTRATORS

Sri Kurella Srinivas, S.A. ZPHS, Pochampalli, Nalgonda

Sri B. Kishore Kumar, S.G.T
U.P.S., Alwala, Nalgonda.

Sri Ch. Venkata Ramana, S.G.T
P.S. Viryanaik Tanda, Nalgonda.

D.T.P. \& DESIGNING

Sri. Md. Ayyub Ahmed,
Computer Operator, S.C.E.R.T., Hyderabad.
Sri. R. Madhusudhana Rao,
Computer Operator, S.C.E.R.T., Hyderabad.

Sri. Kishan Thatoju,
Computer Operator, S.C.E.R.T., Hyderabad.

Sri. G.V. Gopala Krishna,

Cover Page Designer, Nellore

Sri Kannaiah Dara
DPO, S.C.E.R.T., Hyderabad.

ايّن．ايوب＂

جنابّيمّا

＂

ذٌّى ．

$$
\begin{aligned}
& \text { 放 } \\
& \text { 放 } \\
& \text { 放 }
\end{aligned}
$$

2022－23－2 v

FOREWORD

Thought process is a unique boon given to human kind by Nature. Man creates and reconstructs knowledge through the process of thinking and analysis. Man generates knowledge by way of doing, imagining, redoing works in a different way. These may be called the processes of Science.

Science is a systematic logical thought oriented process and a path to truth. Science and Technology have improved human life by way of scientific inventions, discoveries and their applications in various fields.

Human beings understand Nature through Science and use Nature for their benefit while at the same time respecting and protecting Nature. However it is evident that we give importance to the first i.e., harnessing Nature and forgetting to protect and sustain Nature in its pristine form. As a result we experience several calamities leading to destruction of Nature, climate, Earth and finally life on Earth.

The future of the country is being shaped in the classrooms and science learning can never be limited to learning of principles, theories and introduction of experiments. Scientific attitude and thought shapes human beings in such a way so as to make them sensitive to Nature and strive to uphold and maintain bio-diversity. Science learning means commitment towards the good and welfare of society and all life forms including human kind.

Children should learn that science is not only in textbooks but also in the works of peasants, the artisanship of potters, food prepared by mother etc., The local knowledge should enter into science textbooks and must be discussed in the classrooms. Specific observations and logical thinking is required in order to inculcate values and develop life skills. This is possible through study of science. The inquisitiveness and creativity should be developed through science learning. The skill of asking questions, critical observations and developing the spirit of investigations and enquiry shall be facilitated through science teaching and learning.

Science teaching should promote the spirit of knowing and experimenting rather than keep these abilities dormant. The traditional attitude of treating science as a body of facts, theories, principles and information needs to be transformed. The re-learning of the true nature of science must happen as recommended by the National Curriculum Frame Work-2005.

范

كَا لو．

تنقيى⿰冫⿰亻⿱丶⿻工二又

The textbooks are developed based on State Curriculum Framework and its Position Paper on Science and also reflect the spirit of Right to Education Act. Science textbooks are developed to facilitate construction of knowledge jointly by the teacher and the pupil but never as merely an information provider.

The textbook facilitates learning through activities, discovery, exploration in a child centered manner. The activities i.e., group, individual and whole class, experiments, field investigations, information collection, questioning, analysis, synthesis, projects etc., must become a part of learning and as well as assessment in the context of science education. The pupil assessment procedures facilitate thinking in critical and multiple ways. Critical pedagogy and social construction become a part of classroom pedagogies in search of truth. The spirit of continuous and comprehensive evaluation is reflected in the assessment procedures. Certainly the revised textbooks facilitate the teachers in effective transaction of science duly reflecting the nature and spirit of science.

New textbooks are developed to achieve desired academic standards. So teachers should develop various teaching learning strategies to make their students to achieve class based academic standards. We should avoid rote learning methods for successful implementation of Continuous Comprehensive Evaluation (CCE). It is very impart to know more about different methods to assess student progress by summative and formative evaluation. New textbooks reflects Continuous Comprehensive Evaluation and teaching method with respect of discussed concepts. This is more useful to teachers and students.

We are very grateful for the kind of support from the National and State level experts in designing a textbook of science that transforms the very nature of science teaching learning in the state classrooms. We are also thankful to the Textbook Writers, Editors, Illustrators, Graphic Designers for their dedicated work for the cause of children's science education.

With an intention to help the students to improve their understanding skills in both the languages i.e. English and Urdu , the Government of Telangana has redesigned this book as bilingual textbook in two parts. Part-1 comprises 1 to 8 lessons and Part-2 comprises 9 to 16 lessons.

We humbly request the educationists, parents, NGOs and children for appropriate suggestions to improve the science textbooks. We also expect that the teachers and teacher educators will welcome the proposed reforms in science teaching learning process and implement them with appropriate professional preparation and referencing. It is also expected that a habit of scientific enquiry and nature of questioning would be developed among children within the contextual transaction set out in the revised science curriculum and textbooks.

Smt. B. Seshu Kumari
Director
S.C.E.R.T., Hyderabad.

نصابِكتبك تيارِا

Continuous and Comprehensive Evaluation
 مهاوُن وكى-

يارْ

 "
اروراورانزريْ ازر زوْ

حيردآبا,

2022-23-ب ix

BEFORE STEP INTO TEXTBOOK

The textbook is designed duly considering the Inquiry Nature of childhood and their power of imagination. Children's world is creative and they are more inquisitive and want to find out everything they come across and ask several questions until they satisfy on any incomprehensive issue / objects. This nature of the child is the basis for an enquiry mind and for pursuing the scientific knowledge in a systematic way. Let us discuss some of the issues before preparing the children for the learning of science in a scientific way.

The National Curriculum Frame Work - 2005 and State Curriculum Frame Work - 2011 defined science as questioning, and observing the nature and also trying to understand the nature. For this purpose one should question Why? What? How? When? on the observed phenomenon. The children imagine and expect what happens? and what will be the outcomes? Children must experiment and observe by utilizing the available resources in the local environment to find out answers to their questions.

It must be theorized and generalized based on repeated observations. The natural phenomenon and resources which influence our life viz., day and nights, water, air, earth, heat, light, food, flora and fauna must be understood primarily from our life experiences. For this purpose one should reflect on our daily experiences and impact of human interventions in various natural activities / processes. Children must be made to appreciate the applications of science for the betterment of human life, natural phenomenon such as rain, wind, day and nights and growth of life on the earth, bio diversity etc.,

Teachers must think and design strategies for appropriate science education and its classroom transaction to realize the constitutional values, goals and aims of science education and the philosophical perspectives of science education at school level. The transformation of young minds as potential scientists must be explored and afforded. This requires lot of planning on the part of teacher and professional preparation, referencing, collaborative work with the children and encourages bringing children's knowledge into the classrooms.

About Academic Standards....

The National and State Curriculum Frame Works, the Right to Education Act clearly envisaged on the role of the school in achieving the expected academic standards which are subject specific and grade specific. Learning of science does not include learning of information alone, but it includes doing projects to understand the science concepts, undertaking observations and experiments, collection of information, analysis of information and finally arriving to conclusions and generalizations.

Children must draw the illustrations on the observed things and appreciate the interdependence of the living beings in the nature. Appropriate attitudes on keeping the bio diversity and sustaining it is also one of the objectives of science learning in schools. Teachers must play a vital role and take the responsibility in developing such scientific spirit and academic standards.
bis

 اورا

 \%ب!
 انمرولانجامويس-

Teaching Learning Strategies ...

Teaching does not mean transferring information from the textbooks. Teachers must understand the philosophical base of science i.e., why science is as a subject in school curriculum? And what are the expected goals and objectives of science teaching? What is the expected behavioral change in children through science teaching? How to motivate the children to peruse science with increased interest and dedication. The teacher shall plan strategies for science teaching. Following are the expected strategies of the science teaching.

- Textbooks must include various learning strategies to construct knowledge on various science concepts through observations, discussions, experimentation, collection of information.
- Using mind mapping as one of the initial whole class activity and develop debate and discussion on the given concepts.
- Prepare children for discussions by posing appropriate questions. The questions given in the textbook exercises make along with planning additional questions must be used.
- Textbook reading is a must to understand and to get an overall idea on the concepts introduced in the lessons.
- Textbook may be appropriately used while teaching the lesson both by children and as well as teachers.
- Teachers must prepare / collect appropriate equipment, plan and well in advance for a meaningful transaction of the science lessons and plan for children participation through group / individual / whole class work.
- Teacher preparation includes collection and reading of appropriate reference books, sources in the internet, library books, children exercises, appropriate questions to children to think on the given concepts and sharing the prior ideas of the children.
- Appropriate activities to appreciate the nature and natural phenomenon.
- Plan for discussions for improved understanding and appreciation of bio-diversity and efforts to environmental protection and specific roles of the children in doing so.
- Teaching learning strategies and the expected learning outcomes, have been developed class wise and subject-wise based on the syllabus and compiled in the form of a Hand book to guide the teachers and were supplied to all the schools. With the help of this Hand book the teachers are expected to conduct effective teaching learning processes and ensure that all the students attain the expected learning outcomes.

Conduct of Activities

The basic objectives of science teaching facilitate the learning of how to learn. Therefore, children must be facilitated to construct knowledge collaboratively through participating in whole class, group and individual activities.

- Provide advanced information and awareness on the experiments, observations to be done both in side and out side the classrooms along with study of reports.

 آ آ

镜 (2) وتت تياركريى-

 (

 زآمكرنا

- The exercises given in the textbooks must be performed during the classroom teaching learning processes without delay or skipping.
- The activities in the lesson shall be performed not only during its transaction but also during the entire academic year for specific units Eg: food for the animals and changes around etc.,
- The observations, information collection, field investigations etc., must be taken up under the teacher guidance / presence. Some of the work may be given as homework also.
- Local resources may be used as alternative equipment for designing and undertaking activities/experiments.
- Teacher must develop a year plan duly distributing the projects, assignments, field trips given in the textbooks so as to complete with in the available 180 working days.
- Teachers are advised to collect information about recent studies of the areas discussed in the textbook for every year.
- The information given in the bottom line boxes of every page is only for extensive reading.

About assessment

The present practice of testing children to what extent they learnt the information must be replaced by understanding how children are learning. What are the learning problems? What is difficult for children? etc., This may be possible by observing children notebooks, assignments and sitting besides them while doing the work / problem solving. Therefore, importance must be given for the Assessment For Learning than Assessment Of Learning. An effort was made to provide variety of assessment exercises in the textbooks, assess the different competencies to be developed as per the goals and objectives of science teaching in schools. Teachers must understand the continuity and appropriateness of varieties of assessment.

- It is expected that every child must understand the concept and try for his own answer rather than repeating the text given in the textbooks without any value addition.
- Teachers shall not try for uniformity in the answers across the students in the class but encourage them for a variety of responses.
- Some of the exercises for display in the wall magazine, bulletin board, school community meeting are not only for the sake of assessment but it reflects the nature of academic activities to be performed in the schools.

The revised science textbook is all together an improved design reflecting the nature and spirit of science learning and certainly make the children to think and contribute his / her ideas creatively and facilitate the construction of concepts based on the child's prior ideas / experiences. There is no doubt that children would develop creatively while following and performing the activities and exercises given in the science textbooks. It is a challenge for teachers to make children as constructors / creators of knowledge rather than receivers of information.
 ك

竍 ك
號

 معلوات كَ جا

 -
~

ACADEMIC STANDARDS

S.No. Academic Standard

Explanation

1. Conceptual understanding Children are able to explain, cite examples, give reasons, and give comparison and differences, explain the process of given concepts in the textbook. Children are able to develop their own brain mappings.
2. Asking questions and making hypothesis

Children are able to ask questions to understand concepts, to clarify doubts about the concepts and to participate in discussions. They are able to guess the results of on issue with proper reasoning, able to predict the results of experiments.
3. Experimentation and field investigation.
4. Information skills and Projects
5. Communication through drawing, model making
6. Appreciation and aesthetic sense, values

Children are able to do the experiments given in the text book and developed on their own. Able to arrange the apparatus, record the observati onal findings, suggest alternative apparatus, takes necessary precautions while doing the experiments, able to do to alternate experiments by changing variables. They are able to participate in field investigation and prepare reports.

Children are able to collect information related to the concepts given in the text book by using various methods (interviews, checklist questionnaire) analyse the information and interpret it. Able to conduct project works.

Children are able to counicate their conceptual understanding by the way of drawing pictures labeling the parts of the diagram by drawing graphs, flow charts and making models.

Children are able to appreciate the nature and efforts of scientists and human beings in the development of s ience and have aesthetic sense towards nature. They are also able to follow constitutional values.
7. Application to daily life, concern to bio diversity.

Children are able to apply the knowlegde of scientific concept they learned, to solve the problem faced in daily life situations. Recognise the importance of biodiversity and takes measures to protect the biodiversity.

رضاحت

 كـي

-

بش

تياكِّ

 تياركن

 اقرار
-范
 اطلات/حياقَتون

National Anthem

Jana-gana-mana-adhinayaka, jaya he
Bharata-bhagya-vidhata.

Punjab-Sindh-Gujarat-Maratha

Dravida-Utkala-Banga
Vindhya-Himachala-Yamuna-Ganga
Uchchhala-jaladhi-taranga.
Tava shubha name jage,
Tava shubha asisa mage,
Gahe tava jaya gatha,
Jana-gana-mangala-dayaka jaya he
Bharata-bhagya-vidhata.
Jaya he! jaya he! jaya he!
Jaya jaya jaya, jaya he!!

PLEDGE

- Pydimarri Venkata Subba Rao
"India is my country; all Indians are my brothers and sisters.
I love my country, and I am proud of its rich and varied heritage.
I shall always strive to be worthy of it.
I shall give my parents, teachers and all elders respect, and treat everyone with courtesy. I shall be kind to animals.

To my country and my people, I pledge my devotion. In their well-being and prosperity alone lies my happiness."

-

،نیروتّان بيراوطن
 ور

Plants : Parts and Functions

You must have observed a variety of plants at home and surroundings. Some are big and some are small. We can find plants near our home, in the school campus, on the way to school, in the parks and almost everywhere.

- Are all plants similar?
- What are the similarities among them?

Let us get to know more about plants, their parts and functions.

Parts of plant :

We know that we have different parts in our body. In the same way plants also have different parts. Do you know about them? See fig.1. Try to name its parts. Which plant is this?

Fig. 1

In this chapter, Let us try to understand about different parts of plants through activities. For this, all the students in the class should form into groups. Each group should have 4-5 students. Each group will collect 5 to 6 different types of plants along with their roots. You can collect different small plants from your garden or surroundings but take care not to damage other plants.

Activity-1: Identification of plant parts

Observe the collected plants and try to identify their parts. With the help of Fig. 1 write your observations in Table 1 given on the next page. If you don't know the name of any of the plants you can give them a number. You can take the help of your teacher, a gardener or some one else to find the name of the plant.
Based on the observations in the Table 1, let us discuss the following questions.

- Did you find any plant which does not have roots?
- Are the leaves of all the plants similar in size?
- Are there any plants without flowers?
- What are the parts that are common in all plants?

The roots of a tree will remain the same distance from the ground as the tree grows.

 .

 ڭّ نمْرو

;

场 "!

 $1{ }^{\text {* }}$

Table 1

S.No.	Name of the plant	Root Yes/No	Stem Yes/No	Leaf Yes/No	Flower Yes/No
1.	Tridax plant	Yes	Yes	Yes	Yes
2.					
3.					
4.					
5.					

Although there are variations in the size and shape of plants but generally all plants have roots, stems and leaves. Have you ever thought about the importance of root, stem and leaves in plants? What is their role in plants? Let us try to understand these things.

Different types of roots :

Observe the roots of the plants you collected. How are they?

Do all plants have similar types of roots? Is there any difference?

Compare the roots of your sample plants with Fig. 2(a) and Fig. 2(b). Write 2(a) or 2(b), in the column 'roots are similar to',

Fig. 2(a)

Fig. 2(b)
Table-2

S. No.	Name of the plant	Roots are similar to Fig.
1.	Tridax plant	2(a)
2.		
3.		
4.		
5.		

[^0]جرول1－1

				\％و\％	س ＊
4	4	4	4	زهحهيا	1
					2
					3
					4
					5

（a） 2
شٌ
（b） 2
－ـث
جرول－2

	و⿻丷木大	سلـلـ ن
2（a）	سرابها روّوا	1
		2
0		3
		4
		5

كوڤذ كر.ي-

آپ

كيإن بيكوَّز

ثش

- In Fig. 2(a), how does the main root look like?
- Compare this main root with the remaining roots of the plant shown in Fig. 2(a).
- Do you find any such main root in plant shown in Fig. 2(b)? How are the roots of this plant?
- Do you find any other differences between Fig. 2(a) and Fig. 2(b)
In some plants, the main root becomes thick and has thin rootlets. This main root is known as tap root and the rootlets are called lateral roots. (Fig. 2(a)).
In some plants small hair-like roots arising from the base of the stem.

Activity-2: Absorption of Water

This type of roots are known as fibrous roots. Here there is no main root. All roots are similar (Fig. 2(b)).

Functions of roots :

- In activity-1, could you pull out the plants easily from the soil? Or was it difficult? Think why?

Observe the roots of the plants. Is soil attached to the roots? Roots help to hold the plant tightly in the soil. So, we cannot easily uproot the plant.

Do you know why the roots penetrate deep into the soil?

Take two glass tumblers filled with water. Collect two plants having soft stems, along with their roots.

[^1]جرُول كعافقال:-

2
综 ; قك, كيكا

Add red ink in one of the tumblers. Do not add red ink to the second tumbler. Place the plants in each of the tumbler (Fig. 3). Let them be for 2-3 hours and then record your observations.

- Why do you think we added red ink in only one tumbler?
- Did you see any red spots on the stem or other parts of the plant?
- Why did red spots appear on the stem or flowers?

Roots absorb water from the soil by absorption. Minerals present in the soil are also absorbed along with the water.

Do you know?

Some plants store food. Some store in roots and some in their stem. Radish, carrot, beetroot store food in their roots. Therefore, these roots bulge out and are called tuberous roots. Can you give some more examples of tubers. Carrot, sweet potato can also be eaten raw!

Fig. 4

Parts of a leaf

Leaves are another important part of plants. Most plants that we see in our surroundings have different types of leaves.

Observe the given picture of a leaf and its parts (Fig. 5).

Fig. 5

- Where is the leaf attached to the stem?
- What is the flat portion of the leaf called?
- What do you call the small line like structure in the flat portion of the leaf?
- Which part connects leaf lamina with stem?

A leaf contains important parts such as leaf base, petiole and lamina.

Ovary, stigma, style, anther are the sexual parts of a flower.
－：

لبحا
號 پ

隹

埌
（C）
（6）
 ，

为

Activity-3: Are all leaves same?

Observe the leaves of the plants that you collected in activity-1. How are they? Do all the leaves have same size and shape? Compare the leaves of the plants, collected in activity-1 with Fig. 5. Write your observations in table 3. You can also draw the 'shape' and 'edge' of the leaf in columns if describing is difficult.

Table 3

S. No.	Name of the Plant	Leaf base Yes/No	Petiole Yes/No	Lamina Yes/No	Shape of the leaf	Edges of the leaf
1.	Tridax plant					
2.						
3.						
4.						
5.						

- What are the common parts that you observe in all leaves?
- Do all the leaves have the same shape?

Venation:

Observe the leaf lamina carefully. What do you see? You may see some thin line- like structures spread over the leaf!

Activity-4: Venation

To understand the venation let us do an activity.
Put a leaf under a white sheet of paper or a sheet in your notebook. Hold the tip of a pencil flat and rub it on the paper.

Impression of lines appear on the paper. Compare them with the lines on the leaf.

These lines on the leaf are called veins. The long vein present in the middle of the lamina is called midrib. The branches arising from the midrib are called veins and the even finer divisions are veinlets. The arrangement of veins in the lamina is called venation. The leaf lamina usually consists of a midrib, veins and veinlets arranged in the form of a network. Veins spread all over the lamina of the leaf and give it a shape and support. Think what would happen if there are no veins in the leaf!

Petals are usually colorful, they attract insects and birds for pollination.

为

- الْنی كث كيا
 رگيت:-
نور
 .

 پ

Activity-5: Types of Venation

Observe the venation of the leaves that you collected in activity- 1 . Now compare them with the venations of the leaves shown in Fig. 6. Record your observations in table 4.

Reticulate
(web-like)
venation

Fig. 6
Table-4

S. No.	Plant	Venation (Reticulate/ Parallel)
1.		
2.		
3.		
4.		
5.		

Now compare the results obtained in table 2 with table 4.

- What type of roots are there in plants having parallel venation in their leaves?
- What type of roots are there in plants having web-like venation in their leaves?
- Is there any relation between venation and root system?

You will see that the plants with tap root system have leaves with web-like or reticulate venation and plants with fibrous roots have parallel venation.

Functions of a leaf :
Leaves play an important role in the life of a plant. Plants also breathe like us, just as we breath air with the nose. Which part of the plant does this work?

Activity-6: Observation of Stomata

Take a fleshy leaf. Peel the outer layer of the leaf and place it on a slide. Put a drop of water on it and observe it under a microscope. Try to find some bean shaped

Fig. 7

Cashew is not a fruit. It is a fruit stalk.

مشنغله 5:- ریيت عاقشام

جرول4ـ

رگيتونقّ

.

艮

خور

ثـ

6
جالدارى گيت
توازكرگيت
جرول4

6

Compare the parts that you have seen under the microscope with Fig. 7.

The bean shaped part in the leaf are guard cells. The pore in between them is called or stomatal pore stomata. It acts like our nose. It is useful in the exchange of gases between the plant and atmosphere.

Do you know?
In Warangal district, there is a traditional cottage industry where pictures of various traditional and mythological figures are drawn with bright colours on dried leaves. This artwork is famous throughout the world.

Activity-7: Transpiration

Do you know that excess water is removed in the form of vapours from the leaf surface? To understand this let us do the following activity. Do this activity on a sunny day.

Fig. 8

Select a well watered healthy plant that has been growing in the sun. Enclose a leafy branch of the plant in a polythene bag and tie up its mouth (Fig. 8). Take another polythene bag of same size and tie up its mouth without keeping any plant. Keep both the polythene bags in the sun. After a few hours observe the inner surface of the bags. What do you see?

Which bag has water droplets? Think how they are formed there?

Plants release excess water in their body through stomata and some other parts as well. The water is released in the form of vapour and this process is called transpiration. These vapours condense and are seen as droplets in the polythene bag. Think, what will happen if transpiration does not take place in plants.
Another important leaf function is the preparation of food for the plant by the process of photosynthesis. We will discuss more about this in the higher classes.

Stem provides support to the plant Observe the stem portion of some plants that you collected for Activity 1 Record your observations in table-5.

- Do all plants have stems?
- Are the stems of all plants similar?
- How is the stem of the plant that grows horizontally on the ground?

Branches, leaves and flowers develop from the small outgrowths present on the stem.

كياكَ بيأِّ

 (Stomata)
 خارجن اونا

 ك ك ك

Table 5

S. No.	Name of the plant	Stem grows Vertically/Horizontally	Branches are Present/Absent
1.			
2.			
3.			
4.			
5.			

Leaves and flowers grow from the stem. If you observe carefully, you will see a scar on the stem where the leaf arises. The stem branches into sub-branches and bears leaves, flowers and fruits.

Activity-8: Carrying food material

Take two soft stemmed plant. Set them up like you did in activity 2 (Fig. 9). Wait for 2-3 hours and record your observations.

- What differences did you find between the stem of both the plants?
- Do red spots appear on the leaves or flowers of any of the plants?

Take the stem of a plant which was kept in water with red ink and cut a small section transversely with a sharp blade. Take the
help of your teacher for this. Put it on a slide. Observe it under a microscope. Do you observe any coloured portion? Now, cut the stem into two halves vertically, from top to bottom Observe it.

The coloured ring like structure that you see act as a tube. The water absorbed by the root is carried through the stem to all parts of the plant.

Fig. 9

Creeping plants such as grapes have weak stem. Tendrils and hooks formed by the plant helps in climbing.

جبرل5-5			
ثضي موجور/يزّيوبور	لوّ كُورى\|انز"	¢	نـا
			1
			2
			3
			4
			5

پهو

 ط
 هث

كـون كيا؟
 6ا:

Do you know?

Some plants like potato, turmeric, garlic, ginger and sugarcane store food material in the stem due to which they bulge in size. Generally we think that these are all tubers or roots. Actually they are modified stems.

Fig. 10

How can you say that a potato is stem although it grows under the ground? Think it over.

Most plants growing around us have roots, leaves, stems and flowers. All parts of the plants carry out some functions, essential for the whole plant. There are diverse forms of plants in nature and plants adapt themselves to the different conditions in nature in different ways. For example, while stems usually support the plant body, in some plants they modify and store food. Flower is another important part in the plant. Flower has different colourful structures called petals. They attract insects for pollination and produce fruits.We grow plants for colourful flowers which gives beauty to nature. We will learn more about flower in the next classes.

Keywords:

Tap root, fibrous roots, petiole, lamina, stomata, reticulate venation, parallel venation, transpiration.

What we have learnt

- The important parts of a plant are roots, stem and leaves.
- Tap root system and fibrous root system are two types of root systems seen in plants.
- Roots absorb water and minerals from the soil and also help in anchoring the plant body to the soil.
- The branches of stem bears leaves, flowers and fruits.
- The stem carries the water absorbed by the roots to different parts of the plant.
- Leaves help in preparing food, exchange of gases and transpiration.

The substance that causes spicyness in chillies is capsaicin.

بانض

10 \%

جالداررگيت، متوازكرگيت، رميان-
-

设 -

 عَلم

، ".

- Leaf base, petiole and lamina are the parts of a leaf.
- Reticulate and parallel venation are found in leaves.

Improve your learning

1. What are the important parts of a plant?
2. How can you say that one part of a plant is the stem and the other is root?
3. Collect any plant from your surroundings. Draw its root structure. What can you say about its root system of those plants?
4. John has no place in his house but he wants to plant vegetables like tomato in his house. Suggest him different ways to do so.
5. What will happen if a plant doesn't have any leaves?
6. How does the stem help the plant?
7. What type of venation is found in the leaves of plants with fibrous root system?
8. If the leaves have reticulate venation what would be the type of root?
9. Explain the various parts of a plant with the help of a diagram.
10. Explain the parts of a leaf with the help of a diagram.
11. How can you show that plants absorb water through their roots?
12. Rajani said "Plants also breathe in". How can you support this statment.
13. Collect the leaves of various plants. prepare a herbarium. Write a brief report on their shapes, size and venation.
14. Prepare a greeting card with dry leaves.
15. Observe a plant which has healthy green leaves and beautiful flowers. Write your feelings about the plant in your notebook.

Bonsai

Usually we grow rose and chrysanthemum plants in pots. Can we grow a big tree in a pot in a similar way? You may wonder how a big tree can be grown in a pot! There is a method that would make any tree fit in a pot. This method is known as Bonsai. The word Bonsai means dwarf tree. These are also known as Liliput Trees. Bonsai is Japanese art. They grow trees in wide pots for years. Time to time the roots and branches of the trees are trimmed. You too may try it out.

In plants like ginger, the stem is underground, while the leaves are aerial.
 ()

.

1 (1)
(2) آ آ

 ; ;

ק

6

إ

10

Changes Around Us

Fig. 1

Priya wanted to write an article about colours for school magazine. She started observing her mother while preparing tea. Suddenly her brother Teja rushed into the kitchen shouting "See my white shirt is spoilt. It has colour stains. Yesterday it was fine. Why has it become like this? Who spoilt my shirt?"

Mother saw the shirt and said that it might have got this red stain when it was soaked in soap water along with a new red shirt.

Priya who was listening to all this began thinking about all the changes she had seen. She had noticed the change in the colour of the tea after milk was added to it. There was a change in the colour of the shirt. She started wondering.

- Why does the colour of the tea has changed?
- How did the red stain get on her brother's shirt?
- How does an object change colour?

The change of state from liquid to gas is called evaporation.

$$
\text { 10 } 10
$$

- Can you find answers to these questions? Discuss with your friends and think of the answers.
In our daily life we notice many changes around us. These include the changes from time to time, in the crops growing in the fields fall of leaves, the growth of fresh leaves on trees, change in the colour of the sky, change in colour of leaves of trees etc. Flowers bloom and then wither away. Apart from this we notice some changes in our body like increase in length of nails and hair, increase or decrease in weight, and increase in height etc.
Of all the changes we observe in our daily life, we are able to find out reasons for some of them. For other changes, we are not able to find reasons. To explain about any change we observed or noticed, we need to ask the following questions :
- What has changed?
- How do we know that change has taken place?
- What are the possible reasons for that change?
- Which seems to be the most appropriate reason?
- How would we check if the reason is correct?

Let us discuss certain changes in detail.
Changing of milk into curd
We know that curd is prepared from milk. Curd is prepared in almost every house. It is a common experience!

- Do you know how milk can be converted into curd?
Generally curd is prepared by adding a very small quantity of curd (sample curd) to the bowl containing luke warm milk. Then the bowl containing milk with the sample curd is covered by a lid and kept still and undisturbed. We notice that the milk turns into curd after few hours.
- What changes do you see when milk is converted into curd?
- How do you know that milk is changed into curd?
- Is there any change in the state of the milk?
- Is there any change in its volume?
- Is there any change in the weight of the milk?

Activity-1: Comparing milk and curd

Take some milk in a bowl and some curd in another bowl, compare the colour of the milk and curd carefully.

What do you notice? You may notice that there is slight difference in colour from milk to curd.

Now take some milk and curd in separate tea spoons and taste them.

Do you find any difference in the taste of milk and curd?
※
${ }_{C}^{4}$

تبريليون 6شابرهكيا

قرببلانواب؟-

هارى روز

 -

حبز: ليلوالات كريّ
كيا

 انوجو! ش و آ آيَّابَ

 گرول

C60,

You may notice that milk is somewhat sweet and curd can be slightly or highly sour in taste.

Precautions

Do not try to taste any substance until you know what it is and its properties. Tasting of some substances can be hazardous to health. The test for taste is to be done only under the guidance of teacher and for substances we know are safe.

Touch the milk and the curd with your finger to know their state. You will notice that milk is in liquid form. Guess the state of curd. Observe. Curd is neither in solid state nor in liquid state.

What do you call this State of material?
The curd is in semi-solid form. Now measure the level of milk in a bowl and its weight. Then measure the level of the curd and its weight in the bowl.

Compare the measurements, what do you notice?

From this activity, we find that there are changes in milk when it becomes curd. These include change in the colour, taste and in the state. These indicators of change explain that a change has taken place from milk to curd.

- What can be the reasons for this change?

Activity-2: Finding the conditions for making curd

Take three equal volumes of empty bowls with lids as shown in Fig. 2

Fig. 2
Add some ice-cold milk to bowl 1 and same quantity of some warm milk to the bowls- 2 and 3 . Then add small quantity of curd to the bowls 1 and 2 .

Write the values of measurement in table-1
Table 1

S.No.	Substance	Level in bowl	Weight
1	Milk		
2	Curd		

The change of state from liquid to solid is called solidification.

-6
انتبـ大
:2

ك كث

اتّ

, اءْ
 ".

جبول-1

ا ا

Stir them well. The curd must mix in the milk. Cover all the bowls with lids and keep them in your classroom. Leave them and ensure they are not touched even after you have left for home. Observe the changes in the three bowls when you come back to the school next day.
What do you notice about the milk in the three bowls?

- Has the milk in all the three bowls changed into curd?
- Which has not changed into curd? Why?

Compare bowls 1 and 2, and bowls 2 and 3 separately and try to answer the following questions :

- Why do we notice change only in bowl 2 , though we added curd to the milk of bowl 1 as well?
- Why do we notice change in bowl2 though we took warm milk in both bowls 2 and 3 ?

When we compare the bowls 1 and 2 though the sample curd is added in both bowls, the bowl having warm milk is converted into curd. The cold milk does not change into curd.
Similarly if we compare bowls 2 and 3, though we have taken warm milk in both bowls, only the milk in the bowl 2 to which sample curd has been added changes into curd. We may note that the warm milk in the other bowl does not change into curd.

These two observations explain that the reason for change of milk into curd is due to addition of sample curd to warm milk.
The adding of sample curd to the milk helps to grow some kind of bacteria (Lactobacillus) in it and enables conversion of the milk into curd. You will learn more about this type of bacteria in the lesson "living and non-living".

Now let us discuss one more change

Changing seasons

Every year we observe that the seasons changes.
The rainy season is followed by winter season. It is followed by summer season and the rainy season. Like this the seasons change regularly one after the other.

- What changes do you observe from winter season to summer season?
- Is there any change in the clothes we wear?
- Is there any change in coldness and hotness of the air around us?
- Is there any change in duration of day and duration of night?
- Is there any change in the food that we eat or drink?
If the winter season changes into summer, we observe change in our clothes. For example, wearing of woolen clothes in winter changes to wearing of cotton clothes in summer.

ال

960， 46
动 كَ

 ar

放

 كيّ؟

ش

ـ

Similarly we observe that in the winter season is cool and hot in summer season in our surroundings.

In winter, duration of night is longer than in summer.

We take cool drinks in summer but prefer hot tea, coffee or milk in winter.

These changes that we observe, show the change of seasons.

- Which of the above changes are because of changes in seasons?
- Which changes could possibly be the causes for the change in seasons?
- List the changes that you think are caused by the change of seasons.

We also need to think about what are the reasons for changing seasons?

Activity-3: Comparing duration of day in December and May.

See table 2. shows time of sunrise and sunset at a particular place in the month of December, and shows the same information in the month of May. Is there any changes observed in day time of everyday.

- What is the duration of the longest day in December?

Table-2

	December (1)		May (2)	
Day	Sunrise	Sunset	Sunrise	Sunset
1	$06: 29$	$17: 40$	$05: 51$	$18: 36$
2	$06: 30$	$17: 40$	$05: 50$	$18: 36$
3	$06: 31$	$17: 41$	$05: 50$	$18: 37$
4	$06: 31$	$17: 41$	$05: 49$	$18: 37$
5	$06: 32$	$17: 41$	$05: 49$	$18: 37$
6	$06: 32$	$17: 41$	$05: 48$	$18: 38$
7	$06: 33$	$17: 41$	$05: 48$	$18: 38$
8	$06: 34$	$17: 42$	$05: 47$	$18: 38$
9	$06: 34$	$17: 42$	$05: 47$	$18: 38$
10	$06: 35$	$17: 42$	$05: 46$	$18: 39$
11	$06: 35$	$17: 43$	$05: 46$	$18: 39$
12	$06: 36$	$17: 43$	$05: 46$	$18: 39$
13	$06: 37$	$17: 43$	$05: 45$	$18: 40$
14	$06: 37$	$17: 44$	$05: 45$	$18: 40$
15	$06: 38$	$17: 44$	$05: 45$	$18: 41$
16	$06: 38$	$17: 45$	$05: 44$	$18: 41$
17	$06: 39$	$17: 45$	$05: 44$	$18: 41$
18	$06: 39$	$17: 45$	$05: 44$	$18: 42$
19	$06: 40$	$17: 46$	$05: 43$	$18: 42$
20	$06: 40$	$17: 46$	$05: 43$	$18: 42$
21	$06: 41$	$17: 47$	$05: 43$	$18: 43$
22	$06: 41$	$17: 47$	$05: 43$	$18: 43$
23	$06: 42$	$17: 48$	$05: 42$	$18: 43$
24	$06: 42$	$17: 48$	$05: 42$	$18: 44$
25	$06: 43$	$17: 49$	$05: 42$	$18: 44$
26	$06: 43$	$17: 49$	$05: 42$	$18: 45$
27	$06: 44$	$17: 50$	$05: 42$	$18: 45$
28	$06: 44$	$17: 50$	$05: 42$	$18: 45$
29	$06: 45$	$17: 51$	$05: 41$	$18: 46$
30	$06: 45$	$17: 52$	$05: 41$	$18: 46$
31	$06: 46$	$17: 52$	$05: 41$	$18: 46$

The seasons and changes in weather occur because earth rotates on its tilted axis.

جرول-2

	(1)		(2) مـى كا موينه	
اليام	طلوع آفتاب	غروبآنتاب\|	\|طلوع آنتاب	غروب آنتاب
1	06:29	17:40	05:51	18:36
2	06:30	17:40	05:50	18:36
3	06:31	17:41	05:50	18:37
4	06:31	17:41	05:49	18:37
5	06:32	17:41	05:49	18:37
6	06:32	17:41	05:48	18:38
7	06:33	17:41	05:48	18:38
8	06:34	17:42	05:47	18:38
9	06:34	17:42	05:47	18:38
10	06:35	17:42	05:46	18:39
11	06:35	17:43	05:46	18:39
12	06:36	17:43	05:46	18:39
13	06:37	17:43	05:45	18:40
14	06:37	17:44	05:45	18:40
15	06:38	17:44	05:45	18:41
16	06:38	17:45	05:44	18:41
17	06:39	17:45	05:44	18:41
18	06:39	17:45	05:44	18:42
19	06:40	17:46	05:43	18:42
20	06:40	17:46	05:43	18:42
21	06:41	17:47	05:43	18:43
22	06:41	17:47	05:43	18:43
23	06:42	17:48	05:42	18:43
24	06:42	17:48	05:42	18:44
25	06:43	17:49	05:42	18:44
26	06:43	17:49	05:42	18:45
27	06:44	17:50	05:42	18:45
28	06:44	17:50	05:42	18:45
29	06:45	17:51	05:41	18:46
30	06:45	17:52	05:41	18:46
31	06:46	17:52	05:41	18:46

 ,

 كو وج

: 3

روزون
$\underbrace{〔}_{6}$

- What is the duration of the longest day in May?
- Do December and May belong to the same season? If not, to which seasons do they belong?
By looking at the data regarding the times of sunrise and sunset on a particular day in December and May, we see that days are shorter in December and longer in May. Thus there are short duration days in winter and long duration days in summer.

Actvity-4: Does the sun rise exactly in the east in all seasons?

Fig. 3
In the chapter "playing with magnets" we learnt about the magnetic compass. This helps us to find the North-South direction. Take a magnetic compass find the NorthSouth directions with its help. We know that the East-West direction is exactly perpendicular to North-South direction. Mark East-West direction with the help of magnetic compass and compare it with the direction in which the sun rises during the winter season.

Observe the direction of sunrise three to four times in winter and in summer. Compare it with the exact east direction marked with the help of the compass.

- Do you find any change in direction of sunrise between winter and summer season?
- What difference do we notice?

Try to find the direction in which the sun rises even if it is not winter at the time of reading the chapter.

- Did the sun rise exactly in the east?

Observing the changes in shadow during winter and summer seasions

Teja likes to take his photographs very much. His father took his photos in the months of December and May and are given below. Observe Fig. 4(a) and 4(b):

Fig. 4(a)
Fig. 4(a) shows the shadow of a boy, standing on the doorstep of an east facing house, at the time of sunrise. This is on a day in the month of December.

Digestion is the mechanical and chemical breakdown of food into smaller components.

וルק

ـشإبركنا

(a) 4^{5}

ط طوع آنآب اور غ,

مشنغله4:

 كه -

Fig. 4(b)
Fig. 4(b) shows the shadow formed at the time of sunrise on a day in the month of May.

Observe the two photos.

- What difference do you notice in length and direction of the two shadows?
- What does it say about the change in the direction of sunrise in December and in May?
You may also ask some elders about the change in the direction of the sun rays coming through windows or doors facing east during winter and summer. You can also observe shadows formed by the sun rays through windows and doors in your house.
You will notice that the sun does not exactly rise in the east.

In our State around $20^{\text {th }}$ December, the direction of sunrise is a little south of east. Around $15^{\text {th }}$ May, the direction of sunrise is very close to the east. Because of this, we find that the shadow of the boy is right behind him in May and shifts towards his left in December.
This slight change in the direction of the sunrise is one of the reasons for changes in seasons. we will learn more about the exact reasons for the changes in higher classes.
In the two changes discussed above, we notice that for every change there are indicators to confirm that a change has taken place and there is a cause (reason) of the change.

Activity-5. Indicators and causes for change.

The changes observed, indicators of the changes, and possible causes for the changes discussed above are shown in table 3.
Compare the change of milk to curd with change of seasons.

- Which change is slow and which is fast? Why?
- Which change takes place naturally?
- Which change needs initiation/ intervention of human beings to occur?
- Which is a temporary change and which is permanent?

We have used running water as an energy source for thousands of years.

(b) $4 \int^{6}$

اتى ات ا

" 5 اسى رك كُّ

 K

مكنعلالات كوجرول3

Co

Table 3

S. No.	Change	Indicators of change	Causes of the change
1.	Change from milk to curd	- Change in state - Change in taste - Change in smell	The small quantity of curd added to warm milk makes certain bacteria to grow in the milk and it converts milk into curd.
2.	Changes in seasons	- Change in dress we wear - Change in coldness or hotness of air. - Change in food we take and drinks. - Change in availability duration of a day and night. - Change in the fruits and flowers.	The slight change in the direction of sun rise

If we compare the two changes i.e. the "change from milk to curd" and "change of seasons", we notice that the change of seasons is slow when compared to change of milk to curd.

But if we compare change of milk to curd and change in electric bulb due to the switch being on or off, the change of milk to curd is a slow change.
Thus the change of milk to curd is a fast change when compared with change of season but it is a slow change when compared with change in electric bulb being put on or off.

Therefore, whether a change is slow or fast it can be understood only by comparing the changs. .

Similarly, the comparison of above two changes explains that change of seasons takes place naturally, but to change milk into curd we need to add some curd to the warm milk and keep it in such a way that it is not shaken and remains warm. Thus we need some initiation and intervention from human beings to bring a change in the milk.

Also, seasonal changes are temporary as these changes

Curd is a dairy product obtained by curdling (coagulating) milk with rennet.

جبرول3

ثوازان ابيك بوور

 بلب
from winter to summer and summer to rains then rains to winter are continuous. Thus we get winter again. Change of milk into curd is a permanent one, because we cannot get back milk from curd.

The comparision shows that it is possible to classify certain changes as slow or fast, natural or man-made and temporary or permanent.

- Can you think of any other basis for categorization of changes?

Write the indicators and causes for the other changes given below. You may not be able to write the causes of all changes. Try to discuss with your friends and elders to know the causes.

Are you able to categorize these changes as slow or fast, natural or manmade temporary or permanent?

Table 4

S. No.	Change						
		Natural	Man made	Temporary	Permanent	Changes the state	Changes the shape
1	Change from milk to curd						
2	Change in seasons						
3	Change of ice into water and water into ice						
4	Rusting of iron						
5	Growth in plants						
6	Rice to cooked rice						
7	Melting of ice-cream						
8	Egg to boiled egg						
9	Electric bulb on and off						
10	Changes in leaves of 'Touch me not'						

Coal, oil and gas are called "fossil fuels" because they have been formed from the organic remains of prehistoric plants and animals.

?

انـ

ثندرج بلا تبرليول كى ورج بنرى آتتح /تيز

برلبـ

Activity-6: Categorizing changes

Table 4 describes some changes. Study the changes, discuss in groups with your friends and state the category of each change by writing 'yes' or 'no' in relevant columns.

- How many changes are natural?
- How many changes areman-made?
- How many changes are temporary?
- How many changes are permanent?
- How many changes are slow?
- How many changes are fast?

List them in tables 5, 6 \& 7
Table 5

S. No.	Slow Change	Fast Change
1.		
2.		
3.		

Table 6

S. No.	Permanent Change	Temporary Change
1.		
2.		
3.		

Table 7

S. No.	Natural Change	Man made Change
1.		
2.		
3.		

In this activity we have categorized ten changes in three ways - slow/ fast, permanent/ temporary and natural/ manmade.

- In addition to these are there any other properties by which you can categorize the above changes?

Discuss with yourfriends and list properties other than those mentioned above for categorization. Prepare a new table for grouping.

Firing of crackers during deepavali is an example of chemical change.

جبرو6

جرول7

ايكاورק قِ

گڭ

نْ
جرول5

Keywords

Changes, change in state, duration of day, indicators of change, slow/fast change, temporary/permanent change, natural/ man-made change.

What we have learnt

- Many changes are taking place around us.
- Some changes take place naturally and some changes are initiated by human beings.
- There will be many indicators of changes to show that a change took place.
- There exists a cause for every change.
- We can classify changes around us in many ways; slow-fast, permanent-temporary, natural -man-made etc.
- Classification of changes is also made based on various indicators of change like the change in state, change in colour, change in size, change in taste etc.

Improve your learning

1. Is the change of ice into water a temporary or permanent change? Explain.

2. How do you know that rusting of iron is a change?
3. If a raw egg is boiled in water, what changes do you notice in it?
If you are given two eggs, can you determine which one is boiled and which one is not? Explain.
4. Name five changes you notice in your surroundings. Classify them as natural or man-made changes.
5. Choose incorrect statements from the following and rewrite them correctly :
a) The coldness in air during winter is a permanent change
b) Boiled egg is a temporary change.
c) There is a cause for every change.
d) An electric bulb going on and off is a permanent change.
e) There is a change in state when icecream melts.
6. Some changes are listed below, classify them as temporary and permanent.
a) Souring of curd
b) Ripening of oranges
c) The sawing of a piece of wood into two
d) Cooked Rice.
e) Heating of milk.
7. We use clay to make idols. Can we get back clay from the idol? What type of change is it? Explain.
8. Carpenter made a chair using wood, what type of change is it?

A common physical change occurs when matter changes from one phase to another.

2．

الماريا

。

（0）

－
－ 0 人

－
7．

رانانْمانتا
院

铈

动
\%

院
\％

共

9. Rafi said that "Flour from Rice / Wheat is a man-made change." He wants to make a list of examples of this kind of change, help him expand his list.
10. Select a plant in your house / school observe and record changes keeping in view height of plant, number and size of leaves and flowers etc. over a period of 2 months. Display your observations.
11. What will happen if a decorative colour paper is dipped in water? Predict the possible changes. Verify your predictions by doing experiments and write down the steps of the process.
12. Write various processes involved in making ghee from milk, what changes do you find, during this process.
13. Observe the following table and answer the questions give below.

Place	Month	Temperature			Sunrise	Sunset
			Max.	Rainfall		
Rentachintala	January	$21^{\circ} \mathrm{C}$	$27^{\circ} \mathrm{C}$	2.41 mm	6.50	17.12
	April	$39^{\circ} \mathrm{C}$	$47^{\circ} \mathrm{C}$	0.01 mm	6.11	17.47
	August	$24^{\circ} \mathrm{C}$	$34^{\circ} \mathrm{C}$	39.12 mm	6.37	17.31

i) Which month had maximum rainfall?
ii) Which season occurs in the month of August? How can you support your answer.
iii) In which month is the duration of day minimum? What could be the reason for this?
iv) Do you find any relation between sunrise and seasons?
v) What changes can you identify from January to August?
14. Farha wondered "How it could be possible for Nature to bring changes in seasons periodically". Can you add some changes like this.How will you explain them?
15. Sita wondered and felt very happy to see the beauty of the fields and insects like twinkling beetle (Arudra) during rainy season in their village. Can you list some such changes which make you wonder and feel happy?

The energy stored in fuels can be used to perform mechanical work in a controlled manner.

 ف

-10

جبا

11 路
 Water in Our Life

During the festival of Holi, Arvind was playing with his friends. They had gone to the market and bought different colours. They mixed each colour in a bucket of water and poured mugs full of water on each other. They sprayed colours on each other as well. Arvind and all his friends were completely drenched and enjoyed themselves a lot. Then they decided to go and have a wash.

Fig. 1

They went to a well and took bath with several buckets of water. They washed their clothes as well.

- If there was no water, what would happen to Arvind and his friends?
- For what purposes do we need water in our daily life?
- Do plants and animals also require water like us?

We need water to perform several day to day activities like cooking food, washing
clothes, cleaning utensils etc. We can't survive without water for even a single day.

Activity-1: Water and its uses

Make a group of five students and discuss the uses of water in their daily life. Write down the uses.
Classify the above uses of water in three groups.

1. Uses in a house or family.
2. For agricultural purposes.
3. Others.

World wide over 1 billion people use less than 6 litres of water per day.

²\%
11

 قامأْنو

 ان كَ ت
 نإِ

 קرْرتیونّب؟

11

Fig. 2 : Uses of water in our daily life

Measuring the volume of water
Aravind used buckets of water to clean the colours from his body and his clothes. He said he used seven buckets of water. Is bucket a measure of the volume of water used?

- How do we measure the volume of water?

We can store water in different types of vessels. Often, we say, a glass of water, bucketful of water, bottle of water etc. Do you know any specific unit of measurement of volume?

Almost 4 million people die each year world wide from water related diseases.

إْفَع.?

Activity-2: Quantity of water

Collect different used water bottles or water pouches from nearby shops. Observe their labels. What quantity of water is mentioned on the label? Record your observations in your notebook.

- Do all the bottles and pouches have the same quantity of water?
- You can also ask the water-vendor how much water there is in a water can or bottle.

Do you know?

Volume of water and other liquids is measured in litres and millilitres. The water tanks in some villages and most towns and cities have the capacity to store gallons of water. Gallon is also a measure of volume of liquids.

Water level in the reserviors is measured in feet. Water released from dams and projects during floods is measured in cusecs (cubic centimeters/sec).

Think:

Air and water are freely available in nature but now people have to pay for water along with other commodities.

Find out from your parents and grandparents whether they also paid for water.

Activity-3: How much water do we use daily?

We use water for different purposes. Can you estimate how much water your family uses in a day? Can you guess?

Record your estimates in table 1. Also think how you could reduce the amount of water used and write how much water you can save.

Table 1

Work	Water used (In liters)	How much water can you save? (In liters)
Drinking		
Toilets		
Bathing		
Washing clothes		
Other works		
Total		

To estimate in litres the amount of water used, take any 1 litre bottle and find out how many bottles of water are needed to fill a bucket, a glass, a mug etc. Now, find out how much water is used in a whole day by you
43% of water related deaths are due to diarrhoea.

جرول1-1

?

¿.

 كَجانَّ

and your family. (Also, calculate the amount of water you and your family were able to save.)
You have a rough idea of how much water your family uses in a day. With this information you may be able to calculate the approximate quantity of water required for your colony/ village/ town/ city. For this, you will need to know the population as well. Ask your teacher about population.

- Approximate quantity of water used per day by a person in litres.
- Number of people in the colony / village / town
- Approximate quantity of water used per day in the colony / village / town \qquad in litres.
- Approximate quantity of water used per month in the colony / village / town \qquad . in litres.
- Approximate quantity of water per year in the colony / village / town in litres.
Imagine how much water is needed across the total world population per day / month / a year.

Where do we get water from?

We get water from different water sources in our surroundings. In most villages wells, canals, tanks, ponds, rivers, etc are the main water sources.

- List out the sources from where you get water in your village/ town.
- Are the sources from where you get water for your daily needs and crops the same or not? Give your reasons.

Do you know?

Water is not only available from sources such as the rivers, lakes and ponds but also present in certain fruits and vegetables. Fruits like watermelon and vegetables like cucumber contain a lot of water. Can you suggest some other examples? Our body also contains 70% of water by weight. Think, why we take juicy fruits in summer.

Water on the earth

There are different sources of water on the earth. We know that nearly $3 / 4^{\text {th }}$ of the surface of the earth is occupied by water. Is this water useful for us?
Can we drink the water available in the sea?
Sea-water is salty. Hence it is not used in our daily needs but water used by us in our daily purposes is not salty. It is known as fresh water. Water in ponds, puddles, river, from tube-wells and our taps at home is usually fresh water.

Activity-4: Safe drinking water stages

Meet your panchayat officer and collect information about safe drinking water scheme in your village.
之 وا إِ
بتاليُ

كا كا
ك， كرستع بِي

پا
；
 كثر مقرار بی پايا جا －㘳

，
كرَارنٍ

ك كابل

シャ ويولِي تِّن

$$
\begin{aligned}
& \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { آ } \\
& \text { •تقرار } 6
\end{aligned}
$$

اكي ＋1．．．． ثقرارتق يباً．
．
放 － \qquad

 － \qquad

 －ئ．．． \qquad

ان اناز

\％

Don't forget to prepare questionnaire for interview. Display your observations in your wall magazine.
Stages of safe drinking water supply

Observe the stages in the supply of protected drinking water as shown in the flow chart. Based on your observation, write the steps followed in supplying the water to households from water resources. Compare these steps to the method of water supply in your village. Discuss your observations.

Activity-5: How the well was dug?

Go to nearby village and look at a well from where people get drinking water. Can you estimate the approximate volume of water in the well? Collect information from elders in the village about the level of water in the well over the years.

- Is the water level constant or has it changed?
- How was the well dug?
- Have you seen a borewell being dug? Write the process in your notebook.

Do you know?
Even though the river Krishna flows through Nalgonda district, it suffers from severe water scarcity. They are suffering from flourosis. This is because ground water is contaminated with flourine.

Tapping of ground water by digging a well or borewell is a tough job. Many people put in a lot of hard work in this process. We need to appreciate this and preserve water.

You have read about the different types of water sources in our surroundings. The water level in them depends upon rainfall. Generally, we observe that the water levels in wells or other water sources go up in rainy season and down during the summer season.

What happens if there is less rain fall or too much rain fall?

Activity-6: Droughts - water scarcity

Form groups of 4 to 5 students and discuss the following topics

Unsafe water is the biggest killer of children under five; around 90% of all diarrhoeal deaths are in this age group.

آ؟
sex

ك

,

*
ق~

ك

国 6

كو;

Serillen
\downarrow

(Over head Tank) بالانَّنُ
\downarrow
\checkmark

ش شابات

2.

.
in each group. Prepare and submit a group report. The topics to be discussed are:

Group-1 : What will happen if rainfall is less this year than the last year?
Group-2 : What would happen if there is no proper rainfall for five years?
Group-3 : What could be the possible reasons for water scarcity in a particular place?
Group-4 : What problems can arise due to water scarcity in a particular place?

Fig. 3
In our region, if there is no rain for a long period (4 to 5 years), it may cause droughts. During this period, it is very difficult to get food and fodder; drinking water is scarce. People need to travel long distances to collect water. Soil becomes dry as a result agriculture and cultivation is difficult. Many people who depend on farming for their livelihood, migrate to other places in search of jobs. In our state, Mahabubnagar districts are treated as drought prone areas.

Activity-7: Droughts have a severe

 impact on our lives.Here is a Ramana's letter for you try to understand how drought affects our lives.

Kosgi

Dear Firoz,

I hope you are fine there. Nowadays, we are facing severe problems due to drought. For the last five years we have bad no rains. All our fields have dried and there are cracks on them. We fail to grow any crop. My father invested money on bore wells with no results. Now we get water, after a great struggle from the borewell which is five - six kilometers from our village. The days have become very bad. Several people have sold their cattle and migrated to Hyderabad and Bengaluru. My family also wants to do so. I request you to ask your parents to search for a job for my father at your place. My father may bave been a well-known, rich farmer here but he is willing to do any kind of job there.

Yours loving friend
Ramana

The recommended daily water requirement for sanitation, bathing, cooking and consumption is approximately 50 litres per person per day.

ب－
كرئزُ

الهي با

禹尼

 ，

$$
-e_{c} k_{\square} r
$$

（10：
 الپ

E

گ，צ，

 رثقّ

（لـ）

 ب－

 يّ يّ －

安

- What problems were faced by Ramana? Why did problems come?
- How can Firoz help Ramana? Water scarcity is a problem in some districts of our state, as mentioned earlier. Here rainfall is less and farmers are largely dependent on irrigation using underground water to raise crops.
- What will happen if farmer grow crops that require more water in these districts?
- If several bore wells are dug and underground water is tapped constantly, what will happen to the source of ground water?
Discuss with your friends and teachers about the reasons that can cause reduction of ground water.

Activity-8: How much water do we waste?

After playing in the ground you may wash your hands and legs under the tap in your school. Measure the time the tap is on open for you to complete your wash. Then take a bucket put it under the tap open the tap for the same time that you measured with the same flow of water. How many students of your class can wash thier hands and feet with the bucket of water that you collect from the tap?

List out those situations in our life where we waste water unwisely and make suggestions to avoid this.

Activity-9: Floods a natural hazard

Waterless conditions lead to droughts while high water levels due to more tain fall can leads to floods.
Usually, during the rainy season, you may have come across pictures of this type in newspapers (Fig. 4). Discuss the following.

Fig. 4

- What does the picture tell us?
- Does excessive rainfall in certain areas of our country lead to such a condition?
- Are there other reasons as well that can lead to this situation?
- Did you ever face or hear about flood?
- On the basis of the newspaper cutting or your own experience in this matter if any, write down a few lines on floods.
- We can't live single day without water. It is unwise pumping of water

Inability of harvesting rainwater is one of the reasons for drought.

 اورْ

4

 ; مـروارـب؟
كيا

كياياناب؟؟

- <

综

 كَكتّ طلاءا

 معلوم شِيح؟

,
that leads to drought. Arvind decided that water is precious. Don't waste even a single drop of water. We must preserve water not only for us but also for future generations.

Keywords

Water sources, drought, floods, migration

What we have learnt?

- We need water for domestic use, agriculture, industries.
- We get water from sources like wells, ponds, lakes, rivers etc.
- Of the water available on the earth, only 1% is fresh water.
- We depend on rains for water.
- Long periods of less rainfall usually causes condition of droughts.
- Floods are natural disasters they cause property damage and loss of life.

Improve your learning

1. How can you say water is necessary for us?
2. Pavan wants to know the measuring units of water. What
 will you tell him?
3. Why do people need protected drinking water scheme?
4. List out the activities that we perform in our daily life that consume water.
5. In --------- season we face severe water scarcity. Give your reason.
6. The taste of sea water is \qquad
a) Salty
b) Tasteless
c) Bitter
d) Sweet
7. If we use water unwisely what will happen in future. Write your suggestions to prevent water wastage.
8. Prepare a map of your village showing different water sources.
9. Make a pamphlet on "Don't waste water". Display it on wall magazine.
10. Collect information about water related games and make a scrap book.
11. Find out the relationship between water shortage and drought?
12. Justify the statement "droughts and floods are a result of actions made by man". What are your reasons.
13. Aravind never forget to switch off water pumping motor in time. Do you support him? Why?
14. If people are suffering due to severe floods, what would you do to help them?
"ا

0 (b) (a)

نا
كلميوىالفأظا
كر

كريّ E-
15.

ايك ورقي (Pamphlet) تيار سيحي اور ويواوى

13

 3
 كي كـرو ع

$$
\text { 2 } 12 .
$$

 ;راتُّ

 بنا
ثور0.بي ع؟؟
4.

1

 Simple Electric Circuits

Niharika's father Ranganna had to go to the fields after dinner. Watering the field in the night had become a usual practice due to power cuts throughout the day. Ranganna walked out of the house and called Niharika asking for a torch-light. She took the torch and cells out from the cupboard and handed over the torch-light to her father after inserting the cells. He switched on the torch but it did not light up.

- Why it did not light up?
- What could be the problem?
Was there something wrong with the torchlight? Niharika took back the torch and opened it and realised her mistake. She had inserted the cells in a wrong way. She changed the position of the cells and handed over the working torch-light to her father.
Why does the position of cells affect the working of a torch-light?
What does a cell contain? How does it help the torch light glow? Now let us take a cell and observe it carefully.

Activity-1: Observe the cell

Let us take a torch cell (Fig. 2) and observe it. Can you describe it? Write your observations in your notebook.

Fig. 1

Fig. 2

The cell consists of a cylindrical metal can. Its heaviness suggests that it is filled with some chemicals. The protrusion on one end is due to a carbon rod in the centre. At the top of the cell a metal cap is fixed. The entire can is sealed.

Greek philosopher Thales of Miletus (c.624-546 BCE) discovered static electricity.

MEM

12

1 \%

2

 ك

Have you seen $(+)$ and $(-)$ signs on a cell? These signs indicate the two terminals of a cell.

Note:

Do not connect the two terminals of a cell with a single wire.

Fig. 3
Observe a torch-bulb or an electric bulb carefully (Fig. 3).
A torch bulb consists of a glass chamber fixed on a metal cap (metal base). Observe the two metal wires. How are they fixed? One wire is attached to the metal cap and the other is attached to the base at the centre of the metal cap. These wires act as two terminals. The two terminals do not touch each other.
Electric bulbs have two protruded parts on the back side of the metal cap. Observe them. Break the glass chamber and check how the wires are arranged inside. (Take care not to pierce the pieces of glass). Identify the difference between torch bulb and electric bulb.

The part of the bulb that glows is the filament, which is a thin spring like wire attached to the two metal wires inside the glass bulb.

- Why do bulbs and cells have two terminals?
- How does a bulb glow with the help of a cell?

Activity-2: Simple electric circuits

Take four wires of different colours, say blue, green, red and yellow, each about 15 cm long. Electric wires are often covered with plastic. First, remove about two centimeters of the plastic covering from both ends of each wire. Now attach two wires (Blue and Green) to a bulb and two wires (Red and Yellow) to a cell with a cello tape or cell holder as shown in Fig. 4(a). We can use a cell holder to hold the cells and wires together tightly.
[Take an old tube of a bicycle and cut it into narrow bands. Each band should be wide enough to hold the two terminals of the cell firmly. This is your cell holder.]
Now connect the wires in different forms as shown in Fig. 4(b) to 4(g). In each case, check whether the bulb glows or not. Record your observations in table1.

Fig. 4 (a)

English scientist William Gilbert (1544-1603) was the first person to use the word "electricity." He believed electricity was caused by a moving fluid called humor.
(*

مشغفله-2:
سارهرجق وور:-

4(a)

 وهك
 -

Fig. 4(b)

Fig. 4(d)

Fig. 4(f)

Fig. 4(c)

Fig. 4(e)

Fig. 4(g)

Fig. 4(b) to 4(g)
Table 1

Connection	Does the bulb glow (Yes/No)
Fig 4(b)	
Fig 4(c)	
Fig 4(d)	
Fig 4(e)	
Fig 4(f)	
Fig 4(g)	

In which case does the bulb glow? Why? In which case the bulb does not glow? why? The blub glows only in connections shown in Fig.4(d) and Fig.4(e). In Fig.4(d) and Fig.4(e), there is a closed path for the flow of electric current. In Fig.4(f), Fig.4(g), Fig.4(b) and Fig.4(c), there is no closed path for the flow of electric current. In Fig.4(b), Fig.4(c) the bulb is connected to the same terminal of the cell.

Fig. 5 : A simple electric circuit What is a circuit?
Fig. 5 shows a simple electric circuit. It consists of a cell (power source), a bulb, and connecting wires. In an electric circuit, the electric current flows from positive terminal to negative terminal.
An electric circuit provides a complete path for electricity to flow between cell and the bulb. The top part of the cell with protrusion is positive terminal and bottom part is negative trminal.
A similar circuit exists for an electric bulb which we use in our houses. The two electric supply wires are connected to the two terminals of the bulb through a switch. When the switch is ON the circuit provides complete path for electricity.

American printer, journalist, scientist, and statesman Benjamin Franklin (1706-1790) carried out further experiments and named the two kinds of electric charge "positive" and "negative."

راستخك
(4) 4 (g)

* *)
.رقّوركيا؟؟

.

جا

بـاوربلبروثن بوتا

4 (d)

4 (f)
(g) 4 (b) 4

4 (c)

4 (e) ${ }^{5 / 5}$

4 (g)

جرول-1

- Can you observe a bulb and say if it can glow or not when connected in a circuit?

Do you find any difference in the filament of glowing bulb and the bulb that is not glowing ?

Take one spoilt bulb and connect it in a circuit. It doesn't glow. When the filament of the bulb is broken, then no electric current will pass through it as the circuit is not closed. Hence the bulb doesn't glow..

Switch :

We use switches to put ON or put OFF the torch light. Similarly we use various switches in our house to put ON or put OFF the electric bulbs, tubes, fans etc.

What is a switch? How does it work?

Let us observe

Activity-3: Electric Switch

Connect a circuit on a wooden plank or on a thermocol sheet as shown in Fig. 6. Insert two drawing pins at A and B . Insert a safety pin in between A and B, such that one end of the pin is completely in contact with B and the other end is left free. Does the bulb glow?

Fig. 6 : Circuit with a switch
Now touch the safety-pin to pin A and observe the bulb again. What happens?

Why doesn't the bulb glow when the safety pin is left free at one end?

In the above activity, the safety pin is used to close / open the circuit. Electric switch is an arrangement to close or open (break) a circuit.

The switch allows the flow of electricity when it is ON and cuts off the flow of electricity when it is OFF. In this way, the switch is used to allow / stop the flow of electricity to the bulb or any other electrical device.

The flow of electricity in a circuit is called

current.

Italian biologist Luigi Galvani (1737-1798) touched two pieces of metal to a dead frog's leg and made it jump. This led him to believe electricity is made inside animals' bodies.

بلبخراب،وو؟
كيا فمن يّل بو

گز نز 6

وو"

-

روك وْ ¢

$$
\begin{aligned}
& \text { ع كِ }
\end{aligned}
$$

آ آيُمْ
مششغله-3

(国)

Torch-light :

What does a torch consist of?
What makes the torch bulb glow?
Take a torch and observe its internal parts (Fig. 7).

Fig. 7 : Inside view of a torch-light
Torch-light is used as a source of light. The parts of a torch-light are hollow cylindrical barrel, cells, bulb, switch, glass cover and metal spring.
Torch consists a hollow cylindrical barrel in which cells are fitted. At one end of it there is a lid with screw which can be opened and closed. When the lid is closed and switch is ON, the circuit is completed and current flows in the circuit which makes the bulb glow.
In Niharika's case, it was just the position of cells that made the bulb to glow. Can you predict other reasons for the torch not working ?

Activity-4: Let us do

Take a torch which has two cells. Arrange the cells in the torch in as many ways as you can. In which cases does the bulb glow and in which cases it doesn't?

Draw pictures showing different positions of cells and glowing of bulb. Can you find out why the bulb glows only when cells are placed in a particular position?

Electric Conductors and insulators

In activity-2, we used wires after removing the plastic covering at both the ends. Why don't we use the wires without removing the plastic covering? What material do you find in electric wires? Why are we advised to wear rubber chappals while working with electricity?
Let us find out.

Activity-5: Identifying conductors and insulators

Take the circuit which we used in activity-3. As shown in Fig. 8, Remove the safety-pin from the drawing pins so that you have two open terminals A and B. Insert different objects like a hair pin, safety pin, eraser, plastic scale, match stick, piece of a metal bangle, piece of a glass bangle, paper clip etc. in the gap between A and B. With each insertion, check whether the bulb glows or not. Record your observations in table 2 for each case.

Fig. 8 : An open electric circuit

Danish physicist Hans Christian Oersted (1777-1851) put a compass near an electric cable and discovered that electricity can make magnetism.

بقة موضلاورطج：－

－范
：5شغ

（
－

 لبدريً

 جا广范
 إِّ

Table 2

S.No.	Object	Name of the Material	Does the bulb glow (Yes/No)
1.	Hair pin	Metal	Yes
2.	Eraser	Rubber	
3.	Plastic scale	Plastic	
4.	Match stick		
5.	Divider from		
geometry box	Piece of paper		
7.	Iron nail	Piece of Glass bangle	
8.	Pencil lead		
9.	Paper clip		
10.			
11.	Piece of chalk		
12.	Safety pin		

If you look at table 2, after recording your observations you will find that the bulb glows in some cases and does not glow in other cases. Can you guess the reason?

- Substances which allow electric current to flow through them are known as conductors of electricity.
- Substances which do not allow electric current to flow through them are known as insulators.

Michael Faraday (1791-1867), an English chemist and physicist, developed the first, primitive electric motor.

جرول-3

Using the above definitions, can you group the objects you observed in Table-2 as conductors and insulators? Make a list of objects and group them as conductors and insulators and write in table-3.

Table 3

Conductors	Insulators

The story of bulb :
The story of invention of bulb is very interesting. We may think that a bulb is a very simple gadget, just press a switch and it lights up. But do you know that many scientists worked hard for many years before the first successful bulb was made? One of them was Thomas Alva Edison who ultimately succeeded in making the first bulb.

From childhood, Edison was of an inquisitive nature and he learned science by performing experiments himself. You will be amazed to know that in his lifetime he invented more than one thousand inventions.

Even an intelligent scientist like Edison had to work hard for many years before he could make a bulb that worked. First of all, he passed electricity through a thin, thread-like platinum wire. He noticed that the wire did give out light after

Edison's first bulb being heated, but it burned out after only a few seconds. Edison then thought that if the air surrounding the wire coil was removed then, perhaps, the wire would not burn out so quickly.
He made a glass casing and fitted a filament of platinum wire in it. He then removed all the air from within the glass casing. He passed an electric current through the wire and, to his delight, the bulb lit up and continued to glow for eight long minutes. With this achievement he felt happy and began experimenting with different materials while searching for a better choice of filament. He tried cotton thread coated with soot. This filament burned continuously for 45 hours.

One summer day he saw a man fanning himself with a bamboo fan. An idea striked his curious mind -

Fig. 9 : Thomas Alva Edison
Building on his earlier discoveries, Michael Faraday (1791-1867) invented the electric generator.

隹
 ，之
 ك
之药
 رشثن ئيا بون اري ᄃ

با隹 ع
 ك，
 ．

 بإنى

 －عبا رشثا

 ，

回
"Well, why not try bamboo fiber as a filament?" He executed his idea and amazingly the bamboo filament burned continuously for a number of days. Finally he succeeded in making a cotton filament that was even better than the bamboo one. As a result of many experiments, tungsten filament bulbs which we are using today were invented. Is n't that really surprising?

Keywords

Electricity, cell, bulb, terminals, filament, switch, circuit, electric conductor, electric insulator, tungsten
What we have learnt?

- Cell is the source of electrical energy in a torch-light.
- Cell has two terminals, positive (+) and negative (-).
- The filament of the bulb emits light.
- Electricity requires a closed path for it to flow.
- A switch helps us to allow or break the flow of electricity in a circuit.
- In torch-light, when the cell, bulb and switch form a closed circuit, the bulb glows.
- Substances which allow the flow of electricity through them are known as conductors of electricity.
- Substances which do not allow the flow of electricity through them are known as insulators of electricity.
- The electric bulb was invented by Thomas Alva Edison.

Improve your learning

1. What is an electric circuit?

Explain with a diagram.
2. What are the parts of a torch-light?
3. In a bulb the part which gives us light is :
a) Metal base
b) Glass chamber
c) Filament d) Terminals.
4. Classify the following into electric conductors and electric insulators :
a) Water
b) Plastic pen
c) Pencil lead
d) Dry cotton cloth
e) Wet cotton cloth
f) Dry wood g) Wet wood
5. Niharika observed an electrician repairing a street light wearing gloves on his hand. She asked him some questions. What would be those questions?
6. In activity 4 we obsereved some situations where the torch bulb glows. Niharika challenged her friends that she could make the bulb not glow even with the cells kept in proper position. How she could have done?
7. Connect a circuit as shown in the
following diagram.
a) Does the bulb glow? Why?
b) Draw the circuit so that the bulb glows.

Fig. 10

The world's first experimental electric power plant opened in Godalming, England.

3. 3 (

Lead

-
 ا

6.

(a)

7 كياجبا

ع مطالت بلب اور سيول كو تُتبب , ,
 - ك

8. What will happen if the cells in a torch are arranged as shown in the following

9. Draw a circuit diagram showing a cell, switch and a bulb.
10. A circuit is connected with a cell, bulb and a switch, but the bulb is not glowing. Write all possible reasons for this.
11. You have studied the story of Thomas Alva Edison. Write a note appreciating his efforts in inventing the bulb.
12. List the daily activities in which we use electricity.
13. If you put the switch on, a light will glow, a fan will rotate, an iron box heats up etc. All these different functions will be performed by electricity. How do you feel about the comforts given by this great invention to human beings?
14. Write a list of electrical appliances in your house. Classify them as follows.

Works with cell as a source	Works with electric current as a a source	Works with both cell and electric current as a source

15. Connect circuits as shown in the following figure-12. Write your observation in each case.

Fig. 12
16. Match the following:

1)	Cell	$()$,	A) Electric Conductor
2)	Safety pin	$()$,	B) Source of electricity
3)	Eraser	$()$,	C) Filament
4)	Glowing of bulb	(\quad)	D) Electric Insulator
5)	Switch	(\quad)	E) To close or open a circuit

Thomas Alva Edison (1846-1931) built the first large-scale electric power plant in the USA.
8.

. 15

12
. رقي

 كريّ

Rasheed went to a cloth shop with his mother to buy clothes. The cloth merchant used a metal rod to measure the length of cloth. Rasheed asked his mother what that metal rod was and why did the merchant use it? Mother told him that the metal rod was a metre scale that was used to measure lengths. Later, both of them went to a flower market and purchased a string of jasmine flowers. While cutting the jasmine flower string, the woman selling the flowers measured its length with her cubit.

Fig. 1
Rasheed was confused and started thinking:

- Why was a metre scale used to measure the length of cloth?
- Why did the woman use her hand to measure the length of the jasmine flowers' string?
- Which method is correct?

Learning How to Measure

- How can we decide the correct method of measurement?

You might have observed many situations of measurement of length as in the above examples, where sometimes we use instruments and sometimes hands, foot, palms etc.

Fig. 2

- Write some more examples where we use instruments to measure the lengths and some examples where we don't use any instruments, but use foot, hand-span, palm etc. to measure the length. Discuss which method is correct with your friends.

Activity-1: Measuring Lengths

Measure the length of one side of a table using your hand-span (Fig. 3). Ask your classmates to do the same. Record the length of the table in terms of number of hand-spans in table 1:

> We use metre as a unit of length and subsequently, centimetres and millimetres as smaller units of length.

范, كا

$2{ }^{6}$
آيّ

:1-1-4.

 كا كإٌ

15

 - ك ك , رت جِيمّ

路

Table 1

S. No.	Name of the student	Number of hand-spans
1.		
2.		
3.		
4.		
5.		

- Do all of you get the same number of hand-spans for the length of the table?
- Who got more number of handspans? Why?
- Why is there a difference in number of hand spans though you measured the same table?
Now find the length of your classroom using your foot-span. Ask your classmates to do the same. Enter your observations in terms of number of foot-spans in table 2:

Table 2

S. No.	Name of the student	Number of foot-spans
1.		
2.		
3.		
4.		
5.		

- Is the number of foot-spans same when different students measure the length of class room?
- Who got more number of foot-spans? Why?
- Who got least number of foot-spans? Why?

We do not get the same measurements in two cases mentioned above because the hand-spans / foot-spans are not same for each one of us.

We often use these type of conventional methods to measure certain lengths. For example, cubits for measuring the length of a string of flowers and strides for measuring length and breadth of a playground. Similarly, we use another system of measurement while playing 'sirra gona' (gilli danda), where the length of the stick is used as the unit to measure the desired distance.

Foot-span

Hand-span

Fig. 4

[^2]子放

چ 3

 -
-
كَ تقراريّزقب؟
-

قرم

با

جـول

The story of the scale

Many hundred years ago, people used to measure distances with their hand-spans, cubits, strides or foot-spans. One day a very tall man went to a shop to buy some cloth. He asked for three-and-a-half cubit length of cloth. The shopkeeper measured three cubit lengths of cloth and then added approximately another half-cubit length and gave it to the man.

The man felt that the shopkeeper had cheated him. So he measured the cloth with his cubit and found that the cloth was not even three cubit lengths. He told the shopkeeper that the length of the cloth was less than three-and-a-half cubit when he measured with his own cubit. The shop keeper replied that his own arm was the standard for measuring. They both argued about whose cubit was to be taken as standard measure. In those days, people used to measure the length of fields with ropes. Some people used to argue that measurements are not correct and end up in a fight.

- Whose cubit should be taken as standard for measurement?
- How should one measure a half or a quarter cubit length?

No one in those days could give scientific and satisfactory answer to such questions.

Finally, some sensible people got together and decided to have a scale of a fixed length. In order to measure subunits, they marked this scale with several smaller but equal divisions. They then decided that everyone would measure lengths with this scale. They used wood and metal to make scales of the same length.

At one place, people decided to use the distance between the nose and the tip of the middle finger of their king as a measure (Fig. 5). They called this distance one yard. They used wood and metal to make scales of this length and called this distance one yard.

This yard was divided into three equal parts and each part was called a foot. They then divided each foot into twelve equal parts called inches. They even divided each inch into smaller segments!

By using protractor of a Geometry box, we can measure angles less than 180°.

كُ

 Lأ

 ال
 0, تا- , مسيا ب- إن رونو لي .

埌

- ك

Other countries in the world also made their own scales. Because each country had its own scale which differed from others, it led to a lot of problems in trade and commerce. There was always a chance of quarrels breaking out.
Finally in France, it was decided that a certain length of rod made of a special material (Platinum-Iridium) would be called a metre. The metre was divided into 100 equal parts and these parts were called centimetre. Each centimetre was further divided into ten equal parts called millimetre.

The metre scale is internationally accepted instrument for measuring lengths.
One metre is a standard unit of length.
We use metre as a unit of length and subsequently, centimetres and millimetres as smaller units of length.

Fig. 6

1 metre	$=100$ centimetres
1 centimetre	$=10$ millimetres
1 m	$=$ or
1 cm	$=100 \mathrm{~cm}$
10 mm	

Now we are using this as a standard measurement for length throughout the world. This original scale is preserved in a museum in France.

If you want to measure the thickness of an eraser, which of the instruments shown in Fig. 7 is more suitable and why?
Sometimes we may need to measure long distances like length and breadth of school play ground or agricultural fields or distance between our house to school, distance between one town to another town, and even longer distances such as those between one country and another country.

Fig. 7
Can we measure these lengths using the instruments shown in Fig. 7?

- If not, how are these distances measured?
- What instruments are used?
- Is there any other way to measure very large distances?
Discuss with your friends, parents, and teachers to know the answer.

Metre is not a convenient unit for measuring large distances. We need to define a larger unit to measure larger distances. We use kilometre as a larger unit of length.
＂．

فاصل
人 آلاتسكمدس كركتّيب؟

祘
 ק

 ＂

－

 －家

 شيُرّْا

 كـ

$$
\begin{aligned}
& 6
\end{aligned}
$$

$$
\begin{aligned}
& \text { ! } \\
& 1 \mathrm{~m}=100 \mathrm{~cm} \\
& 1 \mathrm{~cm}=10 \mathrm{~mm}
\end{aligned}
$$

One kilometre is 1000 times longer than a metre.

1 kilometre	$=1000$ metres
1 Km	$=1000 \mathrm{~m}$

Activity-2: How do we measure?

How do you measure the height of your classmate using a meter scale?

Do this :

Ask your classmate to stand with his/her back against a wall. Make a mark on the wall exactly above his/her head as shown in Fig.8.

Now measure the distance, from the floor to this mark on the wall, with a scale. Let all other students measure this length in a similar way. Record your observations in your notebook.

Study carefully the measurements reported by different students.

[^3]- If not, what could be the reason for the differences?

In the above activity, though the measurement was done using a standard scale, results may be close to each other but not exactly equal.

The difference in reading is due to some errors in measurement. For example :

- Not marking the point exactly at the top of the head.
- Not using the metre scale in a proper manner.

To measure the lengths accurately using the standard measuring instruments like metre scale, centimetre scale and tape etc., we should take some precautions.

How to measure length accurately with a metre scale?

In our day to day work, we use a wooden/ plastic scale to measure lengths. It is marked or graduated in centimetres and millimetres. Suppose we are asked to measure the length of a table. We will take a metre scale. The zero mark on the scale is made to coincide with one end of the table and the reading at the point which is coinciding with the other end of the table is taken as length of the table.

Since a metre scale has some thickness, we may make an error if the eye is not correctly positioned while noting the reading.

The initial metric unit of mass, the "gram," was defined as the mass of one cubic centimeter.

—號

$$
\begin{aligned}
& 1 \\
& 1 \mathrm{~km}=1000 \mathrm{~m} \\
& \text { 病 }
\end{aligned}
$$

تُك
اليا بيكي－

．〔

 ع
 （Scale）

 ثيز ，وو

 اتا
آپَ

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three students reading a scale by keeping their eye in three different positions as shown in Fig.9. Among them, position of B is correct as her eye is vertically above the point of measurement.

Fig. 9

- Don't we get proper measure by viewing from A and C places? Why?

Precautions while using a metre scale
We must take the following precautions while using a metre scale for measuring length :

Fig. 10

1. The scale should be placed exactly along the length to be measured.
2. Zero point on the scale should coincide with the starting point of the length to be measured.
3. Our eye must be vertically above the point of coincidence of scale where the measurement is to be taken.
4. Ensure that the ends of the scale are not worn out.
5. Measure the length of an object more than two times and then take the average of these measurements for accuracy.
Think! What can you do to know a scale is accurate or not?

How can we measure a small thickness?

Can you accurately measure the thickness of the cover page of your text book or a coin using the scale?

If we want to measure the thickness of a page of notebook or a coin it is not possible to directly use a scale.

Let us look at the method to measure the thickness of a coin.

Activity-3: Measuring thickness of a coin

Take about 10 one rupee coins of same size and place them one upon the other as shown in Fig. 11.

The Arthashastra offers a wealth of evidence for the wide varieties of standardized weights and measures of the time.
;

6اوتطمعلومكياجاــ

 (Scale)

9
㢄

 اقراتات
 معلومكر:نانكّن
 -~~

局

$10{ }^{5 / 4}$

Measure the total thickness with a scale and then divide it by the number of coins to get the thickness of one coin.

Fig. 11
In the same way, try to measure the thickness of a page of your text book.
We generally use a scale to measure the lengths which are in a straight line like the length of a room, length of a table etc. There are certain situations where the lengths are in curved line like the perimetre of bucket, perimetre of a tava or kadai etc.

- Can we measure these curved lengths with a metre scale? If not, why?

Activity-4: Measuring the length of a curved path

Fix alpins at the ends of the curved line to be measured as shown in the Fig. 12.
first point of the alpin A and move the cotton thread along points $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ etc.

Fig. 12
Care should be taken that the thread is neither too tight nor too loose and see that the thread coincides with the curve at each point while moving along the path. When the thread reaches the extreme end of the curved path, cut it at that point.

Remove the thread from A and then place it straight along the length of a metre scale, and measure its length.

The length of the thread is the measure of the length of the curved path.

Measurement of area

Ramu and Ravi's father brought two drawing sheets for them. After taking these sheets from their father, Ramu and Ravi started quarrelling with each other, each one claiming that his sheet was shorter than the others.

Which sheet is smaller? Which sheet is bigger? How can we decide? Now tie a knot with cotton thread at the

> The Mughal measurement system measured land in terms of "gaz" and "bigha".

 راس ک ,

$122^{\frac{1}{3}}$
 -

11^{6}

 (Scale)
 اطاط، - كي
范

Activity-5: Observe the drawing chart figures given below

Drawing chart A Drawing chart B

Fig. 13

By seeing drawing charts given in Fig. 13. Can you decide which is the bigger and which is the smaller?
If not, what method do you adopt to decide the bigger one or smaller one?
Let us do:
Take two sheets of A4 paper and cut them in the shapes as shown in Fig. 13. Now take some empty matchboxes of equal size and keep them on the sheet. Starting from one corner of the sheet, count how many matchboxes are needed to cover the entire surface of the sheet. Similarly repeat the process for the second sheet also and record the findings in your notebook.

- Which paper sheet needed more number of matchboxes?
- From this can you decide which paper sheet is bigger?
You may find that one of the sheets needs more number of matchboxes which shows that one sheet is bigger in size than the other.

Thus, we need to measure the surface of an object to decide whether it is bigger or smaller.

Area is the measure of the extent of plane surface occupied by an object.

In the above activity, a matchbox is taken as a unit to measure area but it is not a standard unit. We need a standard unit to measure the area.

What is the standard unit to measure area?

Observe Fig. 14. In each figure, vertical and horizontal lines divide the surface into certain number of parts.

(a)

Fig. 14
(b)

The Republic of India adopted the metric system on April 1, 1957.

国

نروت،ونّبـ

آيچمعلمعكيّ

 جَ

14

(b)

- How many smaller parts are there in each figure?
- Are all the smaller parts in both figures equal?
- What is the shape of the smaller part in each diagram?
- Is the length and breadth of each smaller part equal?
- Measure the length and breadth of any one part of each diagram. What do you notice?
You may notice that the small parts in each diagram have equal length and breadth, one centimeter each. This small part is called square unit.

Area of each part is equal to one square centimetre and it is written as cm^{2}.

Since Fig. 14 (a) and 14 (b) have same number of squares (of area $1 \mathrm{~cm}^{2}$ each) both the figures have a total area of $16 \mathrm{~cm}^{2}$ each.

Thus, these figures have different shapes but equal areas.

Square centimetre $\left(\mathrm{cm}^{2}\right)$ is a standard unit to measure the area of a surface.

We use m^{2} (square metre), mm^{2} (square millimetre), foot ${ }^{2}$ (square foot), etc., also to measure the areas according to need and requirement of the situation.

Table 3 : Units of measurement

S.No.	Units of Length	Symbol	Units of Area	Symbol
1	metre	m	Square metre	m^{2}
2	centimetre	cm	Square Centimetre	cm^{2}
3	millimetre	mm	Square millimetre	mm^{2}
4	foot	ft	Square feet	ft^{2}

Activity-6: Measuring the area of a regular surface

Cut a cardboard into a shape of rectangle having length 4 cm and breadth 2 cm as shown in Fig. 15. Let us measure its area.

The convenient unit to measure the area of given cardboard would be cm^{2}.
Take a centimetre graph paper.

> The distance travelled by Aeroplane or Ship per hour is measured by knots or nautical miles. 1 Knot is equal to $1.852 \mathrm{Km} / \mathrm{h}$.

كمّ

 كي放 كي

كيطّ
 واــ أرحّو

ر foot ${ }^{2}$

لكهتِي -
جورل-3:يكا

علامت	رجّجاكاكّ	كالمت	طولكاكّ	سلـلـنثان
m^{2}	رنّ	m	يـ*	. 1
cm^{2}	ركّسِّنّ	cm		. 2
mm^{2}	ركّ كّبرم	mm	فكّبمّ	. 3
ft^{2}	رنّ	ft	¢	. 4

Each small square on this graph paper has a side equal to 1 cm . The area of each small square on this graph paper is $1 \mathrm{~cm}^{2}$.

Fig. 15

Place the cardboard on the centimetre graph paper as shown in Fig. 15 and draw its outline with the help of a sharp pencil. Now remove the cardboard and mark the shape as PQRS. Count the number of squares inside the outline. The number of squares is 8 .

Area of the cardboard is equal to the area covered by PQRS on the graph paper.

Area of PQRS $=$ Total area of unit squares inside the PQRS
$=8 \times$ area of 1 unit square

$$
=8 \times 1 \mathrm{~cm}^{2}
$$

$$
=8 \mathrm{~cm}^{2}
$$

In this case, the cardboard we used has a regular shape - rectangle.

Can you relate this method of measuring area of cardboard to some formula of finding area?

Activity-7: Measurement of the area of an irregular plane surface

Let us find out the area of an irregular surface. Take a leaf, which has irregular shape. Place the leaf on a graph paper as shown in Fig. 16. Mark the boundary of the leaf on the graph paper with a pencil. Now remove the leaf to find the outline or boundary of the leaf on graph paper.

Fig. 16
Count the number of complete squares (each of $1 \mathrm{~cm}^{2}$ area) inside the boundary. Also count those squares, inside the boundary, which are half or greater than half. Add this to the number of complete squares.

This total number of squares inside the boundary gives the area of the leaf. If there are ' n ' squares inside the boundary, the area of the leaf becomes ' n ' cm^{2}.

- إلجا

园

ק

 پ.

16

Neglect those squares, inside the boundary, which are less than half.

This process will give us the value of area which is close to the actual area.

How can you use the graph paper to get a more accurate answer? Think!

Measurement of volume :

- How do you find the volume of a solid?

Janakamma is constructing a house. She needs sand and enquired about prices. The supplier informed her that two tractor loads of sand costs ₹ 4000 /- and one lorry load of sand costs about ₹ 4000 /-

- Which deal is cheaper for Janakamma? A lorry load or two tractor loads of sand?
- How can you decide which load has more quantity of sand?

To decide the volume of sand contained either in a lorry or tractor, we need to know the volume of the body of lorry as well as that of the body of tractor.

Volume is a measure of the extent of space occupied by a body.

Measurement of volume of liquids

- How can you measure the volume of kerosene?
- How do you decide the volume of milk?

We use some measuring cylinders to measure the volumes of liquids such as kerosene, milk, oils, water, etc. The volume of liquids is expressed in litres (l) or millilitres (ml).

Measuring cylinder

It is cylindrical in shape, with graduations marked on its body. Measuring cylinders are available in different sizes. They are used in laboratories to measure a certain volume of a liquid and to measure milk, oils, etc by shop keepers. We can fill it with the liquid to be measured and then read the marking at the lowest point of the concave surface of liquid. We must bring our eyes in

Fig. 17 line with this level of liquid and then read it.

Apart from measuring the volumes of liquids, we also measure the volumes of solids, for example, loose solids like sand, clay, and ready mix of cement, sand, concrete which is used for laying slabs while constructing houses.

Astronomers use a method called parallax to measure the distance to some stars

يـئ

;"بجّ

-

,

- What is the standard unit of measuring the volume of solids?
- Can you measure the volume of loose solids like sand, soil, cement etc.?
- How can you decide a standard unit of volume of a solid?

Look at Fig. 18. There are certain number of identical cubes of length, breadth and height 1 cm each, and a cardboard box of length 3 cm , breadth 2 cm , and height 2 cm .

Fig. 18
As shown in Fig.19, place three cubes in a line so as to cover the entire length. Along the side of this line, place another line of three cubes so as to completely cover the base of the box.

Fig. 19

- How many cubes have you used so far?
- How many cubes do you need to cover the entire empty space in the box?
Place more cubes over this set of blocks; so that the total space is occupied by the blocks. Calculate the number of cubes occupying the rectangular box.
- How many cubes occupy the rectangular box?
- Can you guess volume of rectangluar box?

Since each cube has measurement of 1 cm length, 1 cm breadth, and 1 cm height, the volume of one cube is equal to $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}=1 \mathrm{~cm}^{3}$ which is known as 1 cubic centimetre and written as $1 \mathrm{~cm}^{3}$.

Cubic centimetre is a standard unit for measurement of volume of solids.
Therefore the volume of the rectangular cardboard box is equal to the total number of cubes occupying it.
Therefore volume of rectangular cardboard box $=12 \times 1 \mathrm{~cm}^{3}=12 \mathrm{~cm}^{3}$.
However, if we multiply length, breadth and height of a rectangular cardboard box it would be

$$
3 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}=12 \mathrm{~cm}^{3}
$$

Therefore, we can say
volume of a box $=$ length \times breadth \times height

[^4]

پي

號
3

$1 \mathrm{~cm}^{3}=1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}=5 \cdot 6 \cdot 6$

(Cubic مُوْ ك.

$12 \times 1 \mathrm{~cm}^{3}=$? 6 6. $12 \mathrm{~cm}^{3}=$

$3 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}=12 \mathrm{~cm}^{3}$

كَصن:وت6.

 ؟

 2

$18{ }^{5}$

19 ل

با

Do you know?

You must have noticed that the volumes of liquids are written in ml while those of solids are written in cm^{3}. Do you know the relation between these two units. The two units are related as follows :

$$
1 \mathrm{ml}=1 \mathrm{~cm}^{3}
$$

Measurement of volume of irregular

 solids using a measuring cylinderTake a measuring cylinder and fill almost half of it with water. Record the volume of water (Fig. 20). Let us assume it is "a" cm^{3} (or "a" ml). Now tie a small irregular solid (stone) with a fine cotton thread. Put the solid gently into the water in the cylinder so that it is completely immersed in water.

- What changes do you notice in the water level of the cylinder?

You may notice that the level of water in the measuring cylinder rises as the stone displaces water equal to its own volume. Record the new volume of water. Let us assume that it is " b " ml .

Fig. 20

Now the volume of stone will be the difference between the second volume and the first volume
i.e volume of the stone $=(b-a) \mathrm{cm}^{3}$ or ml .

Keywords

Measure, standard unit, area, volume, regular surface, irregular surface, rectangular body, measuring cylinder, graph paper

What we have learnt

- We use some conventional ways like hand-span, foot - span, cubit, etc. for rough measurements in our daily life.
- We need standard instruments to measure lengths accurately.
- Metre scale is a standard instrument to measure length. Metre is the standard unit for measuring length. Larger distances can be measured in kilometers.
- Area is a measure of the extent of the plane surface occupied by an object.

20 范

"يمّ (

$1 \mathrm{ml}=1 \mathrm{~cm}^{3}$
نَ

اب

كلميرىالثاظ:-

اب ايكِپٌو

طول
(Meter Scale) بنم (
ابيمعياریآلـب

 -
اب بإنَ ع لُ .

- Generally we measure area in square metres or square centimetres etc.
- Volume is a measure of the extent of space occupied by a body.
- Volume of solids is measured in cubic metres or cubic centimetres.
- Volume of liquids is measured in litres or millilitres.
- $\quad 1 \mathrm{~cm}^{3}=1 \mathrm{ml}$

Improve your learning

1. What is the smallest distance that you can measure with a centimetre scale?

2. Are we able to measure the thickness of a metal wire using a scale? Explain.
3. A class room measures 20 m in length and 15 m in breadth. Find its area.
4. Ramu's father had a rectangular plot of length 60 ft . and breadth 50 ft . He built a house occupying length 40 ft . of the plot and breadth 40 ft . and in the remaining area he planned a garden.
Can you help Ramu to find out the area of his garden?
5. Millilitre is a unit for measuring
6. For measuring long distances we can use \qquad as a unit.
7. Match the following :

A
B
a) A litre () $1.10000 \mathrm{~m}^{2}$
b) A metre () 2.1000 ml
c) A Kilometre () 3. 100 cm
d) A Centimetre () 4. 1000 m
e) 1 hectare () 5.10 mm
8. What method will you adopt to measure the volume of a banana? Explain?
9. Identify incorrect statements among the following and rewrite them with necessary corrections :
a) One square metre is equal to 10,000 square centimetres.
b) The appropriate unit for reporting the volume of a cylindrical rod is cm^{2}.
c) The appropriate instrument to measure the thickness of a 25 paisa coin is a tailor's tape.
d) A measuring cylinder can directly measure the volume of solids.
10. How will you measure the area of your palm using graph paper? Explain.
11. Measure the volume of "Kalakanda" (sugar crystal) and piece of "Patika" (alum). Record your measurements in table 4.
Ask your friends to measure volumes of the same pieces of Kalakanda and Patika and record the values.

笑
$10000 \mathrm{~m}^{2}(1$
(a اليسبيم

ووبارهُرستسكركـي -

(b)

$$
\begin{equation*}
-c_{6}^{2} \mathrm{~cm}^{2} \mathfrak{b} 61 \tag{c}
\end{equation*}
$$

」 (

8 --

$$
1 \mathrm{~cm}^{3}=1 \mathrm{ml}
$$

1 1
سب ساثق زَّنبياكْ كيا ب؟

 تبرقبمعلوم بّيحي-

.

10

E C 11

$$
\begin{aligned}
& \text { •• } \\
& \text { بح }
\end{aligned}
$$

Table 4

S. No.	Name of the student	Volume of Kalakanda	Volume of Patika
1			
2			
3			
4			
5			

- Are all the values of volumes of Kalakanda equal?
- Are all the values of volumes of Patika equal?
- If not, state the possible reasons.

12. A carpenter who makes wooden furniture, needs accuracy in measurments. Do you ever notice how he measures? How would you appreciate him?
13. Make a visit to panchayat office collect information how VRO measure areas of agricultural lands in your village. Prepare a questionaire for this.
14. Collect any invitation card with envelope. Find out the difference between the measurments of card and cover. Write down the process that you follow.
The distance between numbers in a clock is accurately same. List out the things that you observe in your surroundings with accurate distance between them.
15. Try to imagine the area of CD , sim card, mobile phone then find out the area of the above by using graph paper. Compare the values of your guess with graph paper measurment. Which area is closely related to your guess?

Nature is like our favourite dinner.

But to control our hunger is also necessary.
The more is our hunger, the more will nature reduce.

- M. S. Swaminathan

The purity of gold and diamonds is measured in carats.

جبول4

 تي شَ

$* * * * * * *$

动
 -E 13

 -

$$
\begin{aligned}
& \text { تر ت }
\end{aligned}
$$

ا
,

Movements in Animals

While doing physical exercise we move our body parts in different ways. We lift and bend our legs, hands and other body parts. We can also rotate some parts of our body Have you ever noticed how we are able to move this way? What parts of our body are responsible for these movements?

Usually, when we have to go a short distance from one place to another, we walk or run. But how do animals like fish, snails, snakes etc. move their body or move from one place to another? Can all animal move their body parts like us?

Let us look closely at some of our own movements.

Activity-1: Human body and its movement

Do the following actions. Observe the movements in the body.
Bowl an imaginary ball at an imaginary wicket. Lie down and try to rotate your leg at the hip. Bend your arm at the elbow and your leg at the knee. Stretch your arms sideways, chew some food, bend your arm to touch your shoulder with your finger and try to move other body parts as well. Record your observations in table 1.

Table 1

S. No.	Body Part	Rotates Partially/Completely	Bends (Yes/No)	Lifts up, down (Yes/No)	Moves back and front (Yes/No)
1	Neck				
2	Wrist				
3	Finger				
4	Knee				
5	Ankle				
6	Toe				

The cheetah (Acinonyx jubatus) is one of the fastest mammals found in the animal kingdom. it runs at a speed of 97 km per hour.

جوراناتيلحركت

 67 67

ح户

Lا

جرول-1

عالميوانات

S. No.	Body Part	Rotates Partially/Completely	Bends (Yes/No)	Lifts up, down (Yes/No)	Moves back and front (Yes/No)
7	Back				
8	Head				
9	Shoulder				
10	Elbow				
11	Upper jaw				

All these movement are done with the help of certain parts of our body that lie beneath our skin. We cannot see these parts directly but we can get a sense of their movement under our skin. Can you guess the names of these bodyparts?

Do you know?
We can perform different types of movements with the help of muscles and bones. They are situated inside the body. We can't see and study them as we see our hair, skin, eyes, nose, ears etc.

Now, let us observe how muscles and bones help in movements in our body. For this, it we observe carefully our body from the outside how internal parts work. In addition, if you observe the pictures of bones and muscles you will be able to understand the movements of the body more clearly.

Muscles

Observe walking or running cow, bull or horse, you can see some fleshy structures moving beneath their skin, usually around the shoulders and hips. These tender fleshy structures are called muscles.

We shall perform a some experiments to find out how these muscles help the various parts of the body to move. We shall also see some of the activities that these muscles perform in the body.

Activity-2 : Touch your sholder

Make the left arm fist, bend the arm at the elbow and touch your shoulder with the fist. Also touch your upper arm with the right, as shown in Fig. 1. a bulging part can be observed inside your upper arm.

		$\stackrel{4}{4}_{4}^{4}$		？	ن
				Back	7
				ر	8
				605	9
				rir	10
					11

مشغفله－2：

مورُ يِّ اوراسكا

تثازْ
كِّ

 ！

Fig. 1
This is a muscle. The muscle bulges due to contraction. When contracted, muscle becomes shorter, stiffer and thicker.

Activity-3: Fold and un-fold

Hold one of your hands in front of you, in the manner shown in Fig. 2(b), with the palm facing downwards. Fold and unfold the fingers of this hand one by one. Observe the back of your palm between the fingers and the wrist and observe the movement of the muscles.

- Could you identify the different muscles that move as you fold and unfold each finger?

Now hold your hand with the palm facing upwards, in the manner shown in Fig. 2(a), and fold and unfold your fingers one by one. Study the moving muscles between the wrist and elbow.

- Could you identify the movements in different muscles of hand?

Try to fold and unfold your fingers without moving these muscles. Is it possible to do so?

Fig. 2(a)

Fig. 2(b)

Move the toes in the similar manner, try to observe the movements of muscles in your legs.

After doing all these activities do you find out any relation between moving body parts and muscles?

Perform the following actions and say whether you were able to notice the movement of muscle here as well:

- Fluttering your eyelashes.
- Chewing.
- Breathing in and out.
- Lifting a weight.
- Moving your toes.

(b)2-5

(a) $2-\sqrt{6}$

 شُولتا وانورآتا
, بثزوجا

 ،و

 -
- • جابا

How do Muscles work?

Muscles always work in pairs. When one of them contracts, the bone is pulled in that direction and the other muscle of the pair relaxes. To move the bone in the opposite direction, the relaxed muscle contracts and the first one relaxes. Thus two muscles have to work together to move a bone. Are all the muscles attached to bones? Some muscles are connected directly to bones. Some muscles have

Do you know?
Almost all our body movements depend on muscles, bones and joints. Expansion and contraction of muscle makes the bone move.Muscles always work in pairs.
round, white, rope-like fibres at their ends that connect them to the bone (Fig. 3). These fibrous structures are called tendons.

You can notice the presence of tendons in several parts of your body. For example, above the elbow, beneath the knee, near the ankle (Fig. 4 (a,b,c)). Try to find out and notice them in other parts of your body.

Fig. 3

Fig. 4 (b)

Fig. 4 (c)

> The smallest bird is "Hummingbird".

Its length is 2.24 inches (or) 5.7 cms .
 ركنماريثو
 ساخت كو وَتر (Tendons) كِّ ب! حُ
آبپ وتش (Tendons) كوْم

3 *

 عن

(b) 46^{6}

Bones

In our body all the different types of bones in different body parts combine together to form a single structure. This structure is called a skeleton. It is very interesting to observe the skeletal system, and it is funny to think, how we would be, if we didn't have skelton and how we would do our activities..

Fig. 5 : Skeleton
The average adult male ostrich, the world's largest living bird, weighs up to 345 pounds (or) 156 kgs.
午 رؤ艮

(Clavicle Bone)

16
(Pelvic Girdle)

(6)
(Bones of the Fingers)

(Bones of the Toe)
, أيكا

You saw earlier that muscles are joined to the bones to help them move. In the same way, two bones are joined together in a special way by fibres. These fibres are called ligaments (Fig. 6).

Fig. 6

Activity-4: Jaw bone

Fig. 7

Ask your friend to open his mouth and move his lower jaw up and down as well as sideways. Observe his face carefully.

- Did you notice any joint in the bones near his ear?

This is the place where the lower jaw bone is joined to the skull. Press your finger on both sides of your face and move the jaw. Notice the area where the jaw joins with the skull.

Activity-5: The clavicle

Fold one arm and rest it on your waist. Now slowly lift your arm and shoulder together (Fig. 8).

Fig. 8
Run a finger of your other hand from just below your neck towards your shoulder. Try and locate a raised bone there and the one behind it. The raised bone is called clavicle and the bone behind it is the shoulder blade.

The femur is the longest and strongest bone in the body.
It is located in your thigh.

 الپّ ووّت ع كِّ

ال*

آزوبإو آپ آ 6 لغنور بشابه
 كوكَ جورُ ب؟ بيك وهِّكَ با جبا بإِ كوپٌ ب-

There are two bones protruding from the shoulder called shoulder bones.

Fig. 9
Look at Fig. 9 showing where the clavicle joins the shoulder blade. Now try to locate the joint between the clavicle and shoulder blade.

Activity-6: The ribs

Take a deep breath and hold it for a little while. Feel your chest bones by gently pressing the middle of the chest. These bones are called ribs. Count as many ribs as possible. (Fig-10)

Fig. 10

Ribs are curiously bent and join the chest bone and the back bone together to form a box. This is called the rib cage. Some important internal parts of our body lie protected inside this cage. Try to guess what those important parts are.

Activity-7: Backbone

Ask your friend to stand up, bend forward at the waist and try to touch his toes with his palms. Run a finger along the centre of his back from below the neck. A long structure running down the middle of his back is called the backbone (spinal cord). The small bones that make up this backbone are called vertebrae.

The spinal cord passes through the vertebrae of the backbone. (Fig-11)

Fig. 11

The average adult heart beats 72 times a minute; 100,000 times a day; 3,600,000 times a year; and 2.5 billion times during a lifetime.

بم

 ?
 ،

The Ribsun

$10 \int^{\text {* }}$

Do you know?

There are 33 separate vertebrae in the backbone of an infant. Later out of the last 9 vertebrae, 5 vertebrae merge to form a single bone and last 4 merge to form another single bone. Can you say how many vertebrae you now have?

Activity-8: Pelvic girdle

Press the area just below your waist with the fingers of both hands as shown in Fig. 12. You can notice feel similarly shaped bones on both sides of your body. This is called pelvic girdle

Skull

Fig. 13
The skull is made up of many bones joined together. It encloses and protects the brain. The joints between the skull bones are fused. They are also called fixed joints. (Fig-13)

Activity-9: Flexible bones-cartilage

Hold your ear with your fingers, press it and bend it as shown in the Fig. 14. Also touch and feel the tip of your nose.

Fig. 14
Some parts of the ear and nose are soft and others are hard. The hard parts are made up of a structure called cartilage. This is also a bone but it is flexible. Do you find these flexible bones in any other part of your body? Cartilage is present in other parts of the skeleton as well, like, between the rib and sternum, between the vertebrae of the backbone (spinal cord) etc.

The volume of blood pumped by the heart can vary from five to 30 liters per minute.

13 \%
كورٌّ
, كورٌ

 وو"

هو

4

-:Pelvic Girdle 150

 كَّهِ

12
 ك ك ك ا

而

Activity-10: Different types of joints

We knew that muscles help move a bone. How does one bone help the other to move? Is there any arrangement between bones? Are ligaments of bones sufficient for body movement?

- Let us understand different types of joints in our body.

Put a meter scale under your arm so that your elbow is in the centre. Ask your friend to tie the scale and your arm together as shown in Fig. 15. Now try to bend your elbow. Is it possible?

Bones can't bend. You have seen that the human skeleton is made up of many bones. What will happen if bones can't move? Bones of our body move in their own way, How is it possible? These bones have joints between them. We can move various parts of our body because of these joints.

There are different types of joints in our body to help us carry out different movements and activities. Let us learn about them.

Ball and socket joint

Let us make a model to understand how the joint between the shoulder blades and the bones of your arm works. Place a fused bulb inside the half shell of a coconut and totate it in the way shown in Fig. 16(a).

Fig. 16(a)
A joint made by fitting a ball into a socket is called "a ball and socket joint". In this joint, a bone can rotate easily in all directions. (Fig-16-b)

Fig. 16(b)

According to the Science Museum of Minnesota (SMM), the lungs are the only organ in the body that can float.

:10-0-0

"يْنروييالمُماورُ:-

 بز.

 Ball and Socket
 (b) 16 (b) 16

(b) 166^{6}

 "ِ.

行

 بُّيلا

Vا

Hinge joint :

Straighten your arm and hold your elbow in the palm of your other hand. Try and rotate your forearm in all directions at the elbow joint. Is it possible at the elbow as well? No. Why?

Try one more thing; bend your arm towards your shoulder in the opposite direction. Can you touch the shoulder? Repeat this exercise two to three times. We can fold the arm back only to a certain extent. Were you able to fold your arm backward than that limit?

Could you move your hand from your elbow in all the directions? Why?

Fig. 17 shows a hinge. Where do you find such hinges in your house? Observe how doors, windows attached by these hinges move. Compare these things with that of your elbow and knee.

Fig. 17
Identify and list the hinge joints in your body by taking help of Fig. 17.

Your spine is like a spring :

You may have often done the exercise in which you stand straight up and touch the floor with your palms by bending your body but without bending your knees. You may have also done the exercise in which you have bent your body to the left and right at the waist.

- Could you explain what property of the spine enabled you to perform both these exercises?

There is tender and flexible cartilage between the vertebrae of the backbone. This cartilage between the vertebrae helps in rotating the backbone in all directions. (Fig-18)

Fig. 18

Neck joint

Neck joint is different from both the hinge joint and the ball and the socket joint. This joint helps us to move our head up-down and side to side.

Neck joint is a type of joint called pivotal joint. But, can we rotate our head totally like a top?

The human skull actually has 22 bones. All of these fuse together appear to be one. It is also called as cranium.

动

名

183^{6}
گرونطجورמ＂Neck Joint：－

 －

 ك程 يِّ

 كا كپ م品
〔

$17{ }^{\circ}$
17 كَ جوركّثا
－Cranium

Fixed joints

Some joints between bones in our head can't move; such joints are called fixed joints. These joints are fused and seem to be a single bone in the skull. When you open your mouth, you can move your lower jaw.

Fig. 19

- Can you move the upper jaw as well? There is a joint between the upper jaw and the rest of the head. It is a fixed joint. So we cannot move the upper jaw. (Fig-19)

Movements in other animals
We can move our body parts with the help of muscles bones and joints. Do all animals have these parts like us? Let us study how animals move.

Activity-11: Locomotion

Lets us observe how animals move from one place to another. Fill your observations in table-2.

Table 2

Animal	Body part used for moving	How does the animal move
Cow	Legs	
Human		walks, runs, jumps
Snake		
Bird		hops, flies
Insect		
Fish		

By analyzing table 2 you will see that different animals use different body parts for moving from one place to another (locomotion).

Most of the Amphibian species have a life cycle that involves three stages egg, larva and adult.

,

حكتغنی,
, ويرحوانات
"ا مَ

بُّيّ

كرت

تمام جورُ آبّل بي ايكـ
ووت

آت بّ
19

مشغفله-11 حكتLocomotion:

.

Locomotion in fish :

Fish swim in water. Do they swim the same way as humans? Is there any difference? What features help fish in swimming and how?

Activity-12

Make a paper boat. Put it in water and push it with narrow end pointing forward and observe (fig. 20.a). Now hold the boat sideways and push it into water from the broad side (fig. 20.b). What did you observe? In which process was it easy to move the boat?

Fig. 20.b
The body of the fish is streamlined. The shape is such that it allows the fish to move in water easily. The skeleton of the fish is covered with strong muscles. While swimming, muscles make the front part of the body swing towards one side while the tail swings its body towards the opposite side (fig. 21).

This creates a jerk and pushes the body forward. A series of such jerks help the fish swim forward. The tail fins also aid in this movement (Fig. 21).

Fig. 21

Locomotion in birds :

Birds fly in the air and walk on the ground. Birds can fly because their bodies are well suited for flying. Their bones are hollow and light.

The bones of the hind limbs are typical for walking and perching. Bony parts of the fore limbs are modified to hold muscle of flight which is used to move the wings up and down. (Fig-22)

If sponges are squeezed into juice and kept still.
They will turn into sponges again.
,

 يّ

پَرْنَ不
 $\dot{\xi}$ (Perching) $\dot{\xi}$ (Hind Limbs) كِ

- - ي

مشغفله-12:15

(a) $20 \int^{6 \%}$

(b) 20
آب

حكت
 ".

Activity 13: Observe the Hens and Sparrows roaming at your surroundings. Notice how do they move? Write your findings about similarity and dissimilarities in your note book.

Locomotion in snake

Fig. 23
Snakes have a long back bone and several muscles. Usually the snake's body curves into many loops, while moving. Each loop of the snake gives it a forward push by pressing against the ground. This helps the snake move forward very fast. There are other ways in which snakes move. Do you know what they are? Collect those pictures, information and display them on wall magazine

Activity-14: Locomotion in snail

Collect a snail from a garden or from the field. Have you seen the rounded structure it carries on its back? Place the snail on a glass plate and watch it, when it starts moving Fig. 24 (a). A thick structure may

Fig. 24 (a) come out of an opening in the shell. the thick structure is its foot, made of strong
muscle. The wavy motions of its foot is the reason why a snail moves

Fig. 24 (b)
slowly.
Don't forget to put back the snail from where you collected it. Otherwise it may die.

Movement or locomotion is an important function in every living organism. It is very interesting to watch ants running hurriedly in a line one after the other, squirrels and monkeys jumping on trees. Lets make into the habit of watching and enjoying the various locomotions in the fauna (animals) around us.

Keywords

Bones, muscles, ligament, tendon, clavicle, pelvic girdle, hinge joint, locomotion, cartilage, ball and socket joint.

What we have learnt?

- All the bones of different body parts combine together to form a single structure called, skeleton.
- There are different kinds of joints in our body like ball and socket, hinge, pivotal etc. to help us in performing several activities.

We have 206 bones and over 230 moveable and semi-moveable joints in our body.

كـيرونكَגرارحكت
13-13

-6

$23 \int^{6 *}$

 بشثار ثضلات پا
 - ,
 سانِّ

 (Locomotion)) 3 (Hinge Joint

Socket Joint)

? ?
今

 عا

- Bones and muscles help us perform different movements and activities.
- Muscles work in pairs.
- Tendons join muscles to bones.
- Ligaments are thread like structures which join one bone to aother bone.
- Our spine works like a spring.
- The joint between upper jaw and skull is fixed joint.

Improve your learning

1. What would happen, if there were no bones in your body?
2. Try to identify the joints in the body of a
 goat a cow. Make a list of the joints. Present in them.
3. What difficulties would you face if your fingers had only a single bone?
4. What is a ball and socket joint? How it is different from hinge joint?
5. Fill in the blanks and give reasons:
i) Joints of the bone help in the
ii) The contraction of the \qquad pulls the bones during movement.
iii) The bones at the wrist are joined by a
\qquad joint.

6. Guess who I am

i) I am a joint that works like joint of doors and window.
ii)I help to join two bones.
iii) Joint between upper jaw and skull.
iv) I am a chain of small-small bones
v) I join bone and muscle
7. Collect X-Ray films and observe. Identify which body parts they represent. Write a note on them.
8. Prepare a questionaire to take an interview of a yoga teacher or PET sir about asanas and exercises.
9. Crawling snake, jumping frog, flying bird are they amazing to you? Why you think so?
10. List out the activities that you performed at your home before coming to school. Prepare a list of joints which are involved in each activity.
11. "Which joints involved in plucking flowers, making garlands", Ravi's mother asked. Write down what he would have answered.
12. What is this instrument? How you use this?

That the humans and giraffes have the same number of bones in their necks i.e. 7.
\%
i

 .iii
 . . .
X-Ray . 7

PET
سيحمَ-

آباسولج

12. -! .11
.10

ع

 . جور تـ با
 -
 "

1. -

 .4

15

Light, Shadows and Images

One day Raju started for his home from school, late in the evening. When he started, he was able to see trees, buildings, animals, buses etc. on the road and on either side of the road. As he kept walking, it started growing dark and soon he was not able to see objects either on the road or on the sides as clearly as earlier. When he reached home, it was already dark. He started doing his homework. Suddenly the power went off. He was not able to see any objects in the room.

Raju started wondering.

- Why am I not able to see the objects clearly when it gets dark?
- Why am I not able to see the objects when power went off?
- How are we able to see the objects in the presence of light?
- Why are we not able to see the objects in the absence of light?

Activity-1: How can we see objects?

Make your room dark by shutting the door and windows; put on the light. Look at any one of the objects in the room. After that, hold a plank or a writing pad in front of your face.

Is the object visible to you? Why is it not visible though there is light? What happens when you hold a plank between the object and you?

The object is visible when there is no obstruction between your eyes and the object. If we keep obstructions like plank or writing pad, they do not allow some thing that is coming from the object to reach us. What is that some thing coming from the object?

When we put on the bulb, light falls on the object, bounces from the object and reaches us. We can see an object only when light falls on it and bounces back to our eyes. See Fig. 1 and observe the direction of light from bulb to the object and light from object to the eye.

It takes 8 minutes 17 seconds for light to travel from the Sun's surface to the Earth.
ون, كساياردنيال

 ,

,
جب بم لبكورثق

جَ
动

§
ش~

国
 كا كنيرا

- Where does light come from? Which objects give us light? Think and write below :

A substance which gives light is known as a light source. Sun, a glowing bulb, lighted candle etc. are some sources of light. Any object which burns or glows acts as a source of light.
Is Moon a source of light?
Can you give some more examples for source of light? You might have seen your shadow many times. When did you see it? Is it during day time or at night?
It is our common experience that we see shadows in daytime. Are shadows formed at night? Try to see your shadow in moonlight on a full moon day. It is also possible to get your shadow at night, in your house, when the electric bulb is on. Is it possible to form shadows when there is no sunlight, bulb or any other light?

- What do we need to form a shadow?

We need light to get the shadow of any object.

Activity-2: Do all objects form shadows?

Try to form shadows of a book, a pen, a duster, a polythene cover, and a glass plate on the wall of your classroom with the help of a torch light or sunlight.
Do you find any differences in the shadows of the above objects? Do all objects form shadow?

- Which objects form the shadows?
\qquad
- Which objects do not form shadows?

- Think and write why some objects form shadows? And others do not?

The substances like paper, plank, wood, iron etc. don't allow light to pass through them. These objects form shadow. These are called opaque substances.

The substances like glass and air allow light to pass through them and hence we don't get their shadows. Such substances are called transparent.

The substances such as polythene cover and oily paper partially allows the light to pass through them. Their shadows are unclear. These are called translucent substances. You have also come across these terms in the chapter on materials.

Red, green and blue are the primary colours of light. Mixing them in various ways will make all other colours, including white.

كونق
\qquad
\qquad
ش
\qquad
\qquad
郎

\qquad
\qquad

 ,
اشياكونم ثفاف (translucent) اشيا كبّ
 ~
 كونىاشياروثنو يت بِّ؟

\qquad
\qquad

 ك
 آّپ
آپ٪
 ڭ! ".
 بلبروثن بو

放 ب؟ نروت

ال
 كوْش

Observe Fig. 2. Write whether the sheet held by the boy is transparent, translucent or opaque below each of the pictures.

Fig. 2
Think, guess and write in table 1 which objects in your classroom and at home form shadows, which do not form shadows and which form an unclear shadow.

Table 1

Objects which form shadows	
Objects which don't form shadows	
Objects which form unclear shadows	

Check the above objects in sunlight to verify your guess and make corrections in table 1 if needed. After checking, give your own examples for transparent, translucent and opaque substances.

Transparent Substances: \qquad

Opaque Substances: \qquad

Translucent Substances: \qquad
Thus we see that all objects do not form shadows. Only opaque objects form shadows. We need a source of light and an opaque object to get a shadow.

Are sources of light and an opaque object enough to get shadows? Do we need something more?

Activity-3:

Do this activity in a dark room with a torch and a book. Focus the light on the book with a torch as shown in Fig. 3 (keep the distance about 30 cm between the book and the torch).

[^5]

...............

2^{5}

	- -
-	-
-	

كا

مشیغله-3:
تيث

30

- Where do you find the shadow of the book in the room?

Fig. 3
Now put the torch under the book at a distance of about 30 cm as shown in Fig. 4.

- Where do you find the shadow of the book this time?

Fig. 4

Do the same activity, in open air (outside) at night. Where are the shadows formed in this situation? Do you see a shadow in open air when the torch is under the book? If not, why? As shown in Fig.5, place a drawing sheet or a plank at a distance of 1 m . above the book and try to find the shadow of the book.

Fig. 5

- Now, Did you see the shadow of the book? Where is the shadow formed? Do you find the shadow of the book if you remove the sheet?
- What do you understand from the above activity?
We understand that only light and opaque object are not enough to form the shadow of an object. In addition to these, we need a screen. In the above activity, we used a drawing sheet or plank to get the shadow.

When you turn on a light bulb only 10 per cent of the electricity used is turned into light, the other 90 per cent is wasted as heat.

5

 اル

 6استاسكالكيا

 3%

In our day-to-day life, we observe many shadows on the surface of the Earth. In all these cases, the earth is the screen.

Do you know?

Shadow puppetry is one of our traditional recreational activities. In this, some puppets are used to form shadows on a screen and a story is narrated with the help of these shadows. Observe Fig. 6.

Try to make puppets and do a shadow puppet show in your

Fig. 6 school.

Can we guess the object by observing its shadow?
Observe the shadows given in Fig. 7(a). Guess and write the names of the objects which form the shadows.

Fig. 7(a)

See the objects in Fig. 7(b) and compare them with the names guessed by you.

Fig. 7(b)
The speed of light is the speed at which light travels. It is about 300,000 kilometres per second. Nothing travels faster than light.

(a) 7

- What do you find?
- By seeing shadows, were you able to guess the object correctly in all cases?

You must have wondered when you compared your guesses and the actual objects of which shadows are formed. You may notice that the shadows that look like bird and animal are actually formed by hands. (Try to form similar shadows with your hands.)

- What can you conclude from the above activity?
- Can we guess the object by observing its shadow?

Activity-4: Colour of a shadow

Take four balls of equal size but different colours. Try to form shadow of each ball as shown in Fig. 8. Ask your friend who is facing the screen and not able to see the balls to guess the colour of each ball.

Fig. 8

- Is your friend able to guess the colour of the ball correctly?
- In the same way, let your friend form a shadow of the ball and you try to find the colour of the ball.
- Is it possible to guess the colour of the object by observing it's shadow? If not why?
Shadow is an area where light is absent. Hence, the shadow is colourless irrespective of colour of the object.
We have seen that we can't guess the object by observing it's shadow. Can we guess the shape of the shadow that would be formed by an object?
Let us find.

Activity-5: Shape of a shadow

Observe the shadows of a book, a pen a duster, a ball and a round plate, one by one, in sunlight. While doing this, rotate the objects to change their positions and observe the changes in shadows. Try to answer the following questions on the basis of your observations:

- Is there any similarity between the shadows of ball and a plate? If yes, what?
- What change do you observe in the shadows formed when you hold the pen horizontally and then vertically?

Scientists study the properties and behaviors of light in a branch of physics known as optics.

كـ碞

约 －ا

 رنّعتو

انرازهنْ

آ يُمعلومكريس－

 كرت

（希 ذ ك

 كـ كا

- What differences do you observe in the shadows when the duster is kept in different positions by rotating it?
- Why are the shapes of the shadows of the same object different when you change the position of the object?
Observe the objects, formation of shadows and the path of light in Fig. 9(a) and 9(b). Similarly, draw the shadows for the objects given in Fig. 9(c, d). Extend the path of light and draw shadow on given screen.

Fig. 9(a)

Fig. 9(c)

Fig. 9(b)

Fig. 9(d)

We have drawn arrows in the above figures assuming that light travels like rays that are straight. We can predict the shapes of the shadows only when we consider that light travel as rays along a straight path. In ancient days, by observing the shapes of shadows, people came to an understanding that light travels in a straight line.

Activity-6: Getting different shapes of shadows of a single object:

Take a rectangular piece of cardboard. Try to form shadows of different shapes by using it. You can do this in the sunlight or with the light from torch. Now, answer the following questions :

[^6]號

(a) 96

(b) $9{ }^{6}$

(d) $9 \sqrt{6}$

罗

- Were you able to make a square shaped shadow?
- Were you able to make a triangular shadow?
- Were you able to make a circular shadow?
- What are the other possible shapes?
- Why are we getting different shapes of shadows when the object is same?
Because of the straight line path followed by light rays, we can get different shaped shadows for a single object by changing its position.
The nature of straight line motion of light can also be understood by pinhole camera.
Did you ever hear about a pinhole camera? With this camera we can observe a big object through a pinhole. Isn't it interesting? Lets make a pinhole camera.

Activity-7: Making a pinhole camera

You will need :

- A pvc pipe, about 8 cm in diameter and of length 30 cm .
- A pvc pipe, about 7 cm in diameter and of length 30 cm .
- One black drawing sheet.
- Oil- 1 ml , two rubber bands, a pin, and white paper (A4 size).
(If you cannot get pvc pipes, take a thick sheet of paper and roll it to form tubes. The diameter and length of the tubes should be the same as that given for the pipes.)
Cut a piece of black paper and put it like a cap at one end of the big pvc pipe and fix it with a rubber band as shown in Fig. 10(a). Put the white paper like a cap at one end of the thinner pvc pipe. Fix it with a rubber band as shown in Fig. 10(a). Now make a hole in the middle of black paper cap with the help of a pin. Put 2 to 3 drops of oil on the white paper cap so that it becomes translucent.
Insert the thin pipe into the big pipe.

Fig. 10(a) Your pinhole camera is ready.
Arrange a lighted candle in front of the pinhole of the camera. Move the thinner pipe forward and backward to get a clear picture of the candle on the screen of the thin pipe. This picture is to be observed from the back of the thin pipe (see figure 10b).

Fig. 10(b)

[^7]

 كنار <
 ك كيآپ

(a) $10{ }^{5}$
 ا اكِ

ك ك ك
$-!$

L6

,

-

, كِ

(Pinhole camera)
اسكيم
, كيكَ
-
:7-4li inn

ضرورىاشیا:-
(ك~

- What do you observe?

The flame of the candle appears inverted on the screen. Why is it like that?

This is not the shadow of the candle. It is its image.

By observing Fig. 11(a), try to understand how light enters into the pinhole camera. This will explain the reason for inversion of image.

The light from the candle travels straight in all directions from each point of the flame of the candle. But only the light coming in some particular directions can enter into the camera through its pinhole.

Fig. 11(a)
Light which comes from the point at the top of the flame goes straight towards the bottom of the screen and light which comes from the point at the bottom of the flame goes straight towards the top of the screen, as shown in Fig. 11(a). In this way, light rays from the flame coming in the direction of pinhole enters the camera and light in other directions is blocked by the black sheet.

This leads to the formation of an inverted image.

The formation of inverted image on the screen of the pinhole camera explains that light travels in a straight line.
Now look at a tree through the pinhole camera as shown in figure 11(b).
We get the full image of the tree in the pinhole camera.

Fig. 11(b)
But when we put a candle in front of the pinhole camera, we get the image of the flame only. The image of complete candle is not formed. Why is it so?

- Predict what would happen if we make two pin holes in the camera? Now make two holes using a pin on the black paper cap of the pinhole camera and see a lighted candle through it. Write down your observations in your notebook.
- Did your predictions match with your observations?

Activity-8: Image with a magnifying lens

Take a magnifying lens and try to form an image of a tree on a white drawing sheet.

The white light from the sun is a mixture of seven colours of the rainbow.

هـ
 آ
 ب-اييا يون بوتاب؟

(b) $11{ }^{\text {ش }}$

 ک

نوط بيكيم-
ك ك

(a) 111^{6}

 گِ
 * *

- What do you observe? How is the image formed on the sheet? The image on the white drawing sheet is inverted. Isn't it? What difference do you notice between the images formed through the pinhole camera and through the magnifying glass?
You may notice that the image formed through the magnifying lens is clearer than that formed with a pinhole camera. Differences between Image and Shadow:
We see our face in the mirror everyday. Is this picture in mirror a shadow or an image? How do you decide that?
We know that shadows are not coloured but an image has colours that are same as that of the object. Also, a shadow shows only the outline of the object but an image shows the complete object as it is, just like a photograph.
- Can you find any other differences or similarities between shadows and images? Write in your note book.

Can you show the difference of a shadow and an image through a drawing?
Draw the shadow and image of the object shown in Fig. 12

Fig. 12

Activity-9: Observe the Reflection

Make your class room dark by closing doors and windows. Ask one of your friends to hold a mirror in his hand. Take a torch and cover its glass with a black paper. Make a thin slit in the middle. Now switch on the torch and adjust it so that light falls on the mirror in your friend's hand. Ask your friend to adjust the mirror so that the patch of light falls on another friend standing in front of him at some distance. as shown in Fig. 13.

Fig. 13

- What do you observe from the above activity?

When light falls on any object, it rebounds back. This is called reflection.

Ask your friend to cover the mirror with

Laser is also a kind of light. Lasers are used to destroy and kill tumours and many other purposes.

آ〒 غאیامشابركيا؟
سفيد 6 ثز پِا
 هص

سـان (slit)
 \% ,

 خا خإلز

13 范

 كتابـ

122^{5}

a book. Now switch on the torch and focus it on the book. Can you see the reflected light on other friend? If not, Why?
Did the light that fell on the book not get reflected? We know that we can see the objects only after light is reflected from them, as mentioned in activity 1.
If light falls on any object, it is reflected back. But we see reflected light, only when light falls on the objects like mirror.

Precaution: You can reflect sunlight using mirrors and play with it. But make sure that the reflected light does not enter your eyes.

Keywords

Light, sources of light, shadow, transparent substances, translucent substances, opaque substances, pinhole camera, image, reflection

What we have learnt

- We need light to see objects.
- A substance which gives light is known as a source of light.
- Shadows are formed when opaque objects obstruct the path of light.
- In addition to light and object we also need a screen to obtain the shadow of an opaque object.
- Colour of objects cannot be determined by looking at their shadows.
- Light travels in a straight line.
- Light gets reflected when it falls on any object.
- People came to an understanding that light travels in a straight line by observing the shapes of shadows.
- An image and shadow are not same.

Improve your learning

1. Classify the following objects into transparent, translucent, and opaque :

Cardboard, duster, polythene cover, oily paper, glass, spectacle lens, piece of chalk, ball, table, book, window glass, palm, school bag, mirror, air, water.
Which type of materials do you find more in your surroundings?
2. Hold a glass slab at one end with your hand and stand in sunlight. See the shadows of your hand and glass slab. Explain what you observed.
3. We can't identify the presence of completly transparent objects even in light. Is it correct or not? Support your answer.
4. Why can't we see objects which are behind us?
5. If we focus a coloured light on an opaque object, does the shadow of the object posses colour or not? Predict and do the experiment to verfiy your predictions. (Coloured light can be obtained by covering torch glass with transparent coloured paper)

پ．
ثنش

3．

4．
，

レ

باستّن ب）

،

（Precaution）اتّ

 （Pinhole Camera） ＂
－كـ

率

－ －

思
6. Between an electric bulb and a tube light, which forms sharp shadows of objects? Do experiment to find and give the reason.
7. What is required to get a shadow of a opaque body?
8. How can you explain that light travels in a straight line?
9. Explain what happens if the size of the hole in a pinhole camera is as big as the size of a green gram? Increase the size of the hole in pin hole camera and look at any object with that camera. What do you find? Write reasons for that.
10. Draw the shadows in your note book for the objects given below assuming that the light source is exactly above these objects.

11. Observe the light source and mark the place where the screens should be kept to get the shadows of the objects given below.

12. Where do you find reflection of light in your daily life? Write few examples.
13. We would not be able to see any object around us if light does not get reflected. How do you appreciate this property of objects?
14. Why do we get shadows of different shapes for the same object?
15. What are the differences between a shadow and an image?
16. Malati noticed changes in lengths of her shadows during the day time. She got some doubts about this. What could be those doubts?
17. Make a pin hole camera.
18. Collect the objects whose shadow and image look similar and display in your classroom

Light travels with different speeds through different mediums such as glass, water and air.
10.

$$
\begin{aligned}
& \text { 6. . } 6 \\
& \text { 的 } \\
& \text { اروروبإت بإن } \\
& \text { 7. }
\end{aligned}
$$

$$
\begin{aligned}
& 8 \\
& 9 \\
& \text { - }
\end{aligned}
$$

11

 18

13. آر رشن

-
14 ¢!

,

16

Living and Non-Living

Venkatesh likes his blue shirt which he bought in the previous year. Now it does not fit him. He wants to alter it to suit him. He went to a nearby tailor shop along with his friend Tanvir. The tailor refused to alter the shirt because he said that it is not possible to increase the size of a shirt. On the way back, the friends saw a dog lying on the roadside as if it was fast asleep. Venkatesh wondered whether the dog was alive or not. "It

Fig 1 is quite obvious that the dog is alive, its stomach is telling us that it is alive. Look at it carefully." said Tanvir.

- Venkatesh's favourite blue shirt does not fit him now? Think why?
- How will you decide whether the dog is alive or not?
- Can you decide whether a plant is alive or not by using the same reason?

There are many things around us; different types of plants, table, chair, soil, rock, clothes, animals, insects, birds. We can categorize them in various groups. Members of a common group share some common characteristics. In the previous chapter, we categorized materials as solids,
liquids and gases. Another type of category is that of living things and non living things.

- Do all living things share some common characteristics?
- What are those common characteristics?
- To be a part of living group is it necessary to bear all the characteristics of living things?

Activity-1: Living things - Non living things.

Make a list of living things you know.

The seeds of an Indian Lotus plant remain viable for 300 to 400 years.

16

园的
中范 —工 ك
 بـ تٌ
范
祘 باتّ ين ，线

 －

 ك祘 كآ ，

Don't forget to give reasons for why you think something is living.

Chair and tables also have four legs like buffalo. And why don't they move? Trees also cannot move but they can produce seeds which produce new plants. How do we know whether some things are living and some others are non-living?

You will notice that there are many characteristics of living things. Do all living
things have common characteristics that make them different from nonliving things?

- Do you know you are a living being? How can you say that?

Activity-2: Compare the characteristics

Some characteristics that are listed in Table-1 tells you that you are a living being. Compare these characteristics with plants, animals and rocks.

Table 1

S. No.	Characteristics	In you	In plants	In animals	In rocks
1	Growth	\checkmark		\checkmark	\checkmark
2	Movement			\times	
3	Taking Food				
4	Breathing				
5	Getting rid of waste				
6	Respond to Heat				
7	Respond to touch				
8	Respond to light				
9	Giving birth to				
	young ones				

- Do plants and animals possess the same characteristics as you do?

In which way do the characteristics of plants differ from you or from other animals?

A new born blue whale measures 23 feet ($\simeq 7$ meters) long and weighs up to 6,000 pounds (3000 kg).

ك كَ
آبكِ كِ كَ

\square
صوصيا كا
;

بابن كنان:وبوليى-

إم

	حيوانات		آשל゙	غ هوصيات	سلـلـثّان
\times	\checkmark	\checkmark	\checkmark	-	1
			-	\%	2
					3
		\checkmark		انى	4
				ناكر6	5
					6
					7
-					8
				隹	9

 خوصياتيّنزق بإياباتا

- What characteristics are same in plants and animals?
- Do you agree that you are the same as other animals?
- What characteristics do you observe in rocks?

The things around us that possess the characteristics listed above are known as living things. Those which do not possess these characteristics are known as nonliving things.

Some of the characteristics are common in all living things. Can we say all characteristics listed in activity 2 apply to all living beings?

You know that plants are also living beings like us. Plants grow like we do but do they move like us?

Is it essential for a living thing to have all of these properties or could a thing be considered living if it has some of these properties? Let's take a closer look at the characteristics of living things.

Movement in living beings :

How do the following living beings go from one place to another? Observe the following table-2 discuss in groups and write the way the organisms move.

Table 2

Living organism	Moving method
Myself	walk, run, ...
Housefly	
Grasshopper	
Frog	
Snake	crawls, ...
Pigeon	
Fish	
Plant	

Do you have more examples of different kinds of movements in animals? List them in your notebook.
We see that plants don't move like us. Should we consider them as living beings? There are some movements in plants for example, closing and opening of flowers. Discuss in groups. List out the movements in plants. Track your discussions in your notebook.

- We say that plants don't move but we find plants of the same types in different locations. How is this possible?
- Other than plantation by human beings there are many natural ways of seed dispersion. The seeds grow into plants and we feel that

ِ

كيا آ چيوانات مثن ليِ, هارى

پورو

啇 وr

خصوصاتسكنى بي؟

共
 r

 ק

 ط لِ بِ بـ

(2)
plants have moved from one place to another. Can you list these natural ways of seed dispersal? We will learn more about this in the next class.

Food and living beings :

We have learnt in the chapter 'our food' that for us as well as for all other animals need food to perform different activities.

- Do plants also need food?

In the chapter "plants parts and functions", we have seen that some parts of plants like root, stem and fruits store food.

- Where do plants get their food from?

Most of the plants absorb water and minerals from the soil and prepare their food in the presence of sunlight. In plants food is prepared in the leaves. This is called photosynthesis.

Do you know?

We also prepare food. Is our food preparation process is same as that of plants? Some plants cannot prepare their own food. They depends on the other platns for their nutrition. These plants are called 'Parasitic Plants'. eg. Cuscuta. (dodder plant)

Growth in living beings :

You notice that kittens, pups and chicks grow into adults. You become taller every year.

Similarly, a seed germinates into a plant. Some plants grow into trees. A human child grows into man/woman. Plants also produce branches that show their growth. They grow throughout their life but we don't grow like that. We will grow upto certain age and height. But some parts of the body grow throughout our life. Think what are those parts? (Fig. 2(a) and 2(b)). Sounds fun to think of what it would be like if we were also constantly growing like trees!

Fig. 2(a)

Activity-3: Some Grow - Some Doesn't Grow

You listed several living things in activity 1. How do they grow? Analyze your observations. Also add some things that don't grow. Record in table3.

Fig. 2(b)

The average cough comes out of your mouth at 60 miles (96.5 km) per hour.

هر
 ،و 之

 نوك

(a) $2 \int^{6}$

مس
 . 1

- シ!

غزا|ورجانغاراجام:

 "بنق"
 نزا

$$
\begin{aligned}
& \text { كر كـ, }
\end{aligned}
$$

Table 3

Grows for a certain period	hen, ...
Grows throughout its life	
Doesn't Grow	rock, ...

- Do all living things grow throughout life?
- Pick up any item from the column 'doesn't grow' in the above. Does it need food?
- Do you grow for entire life time or why not?
If we grew like trees, how would we look like? It's funny to think. Have you read stories of Lilliputs, David and Goliath?
Non-living things cannot grow. Growth is also a characteristic feature of living things. Is it common to all living things?
Do all living things breath?
Observe the abdomen of a cow when it is in rest position. How is it? It moves slowly. This shows that the cow is breathing. If you keep a finger in front of your nose, you feel air coming out of your nostrils.
- Do all birds have noses? How do they breathe?
- When we breathe in or inhale, air moves from outside to inside our body. When we breathe out or exhale the air inside comes out.
- Fish can't remain alive in air. How might they breathe while remaining in water?

Do all living things breathe? Do plants breathe like us? We know that they don't have a nose. How would they breathe? Let us try to understand.

Activity-4: Plant has nose

Take any fleshy leaf like, Aloe vera. Peel the upper layer from it and put it on a slide. Observe this under a microscope. You will see the structures as shown in Fig. 3. They are called as stomata. These are useful for exchange of gases.

Fig 3 (a)

Fig 3 (b) stomata

Do all living things get rid of their waste?

We know that all living things take in food. After digestion, wastes have to be removed from the body. Our body produces different types of waste materials during different life processes. When we work hard our body becomes wet with sweat. Sweat is a waste material.

An egg white is made mainly of a protein called albumen

انَ ليّ بن؟
號 ك كرع

尼

 ．

（a） 3^{5}

苋

3
 ك納 آك゙ اياس

 ¢ ب－كا

放
 ك كا

The process of getting rid of wastes from our body is called excretion. In what forms do animals excrete?

Fig 4(a)
Animals excrete wastes in different forms - dung, urine, sweat etc. Plants also excrete their wastes but this is not in the same way as animals. Have you ever observed sticky substance on the stems of trees?

Actually this gummy substance are the excretions of plants. Generally we feel that excretions are useless and foul smelling material. But excretory products of animals are used as manure. Secretions of plants like, gums and resins, are also useful for us.

Activity-5: Living things give birth to

 young onesMake a group with 4 or 5 students. List out birds and animals from your surrounding. How do they produce their young ones? Write in table-4 whether they lay eggs or they give birth to young ones.
Write the table in your note book and Extend the list.

Fig. 4(b)

Table 4

Animals/ birds that lay eggs	Those which give birth to young ones

The Atlantic Giants Squid's eye can be as large as 10 inches (25 cms) in diameter

ب-

 ;

(b) 4

」

(a) 4^{64}

 ,

 - ك

Birds and animals that lay eggs for giving birth to young one are known as oviparous. (Fig-4(b)) Those which give birth to young ones without laying eggs are known as viviparous. (Fig-4(c))

- Can plants be classified as Oviparous or Viviparous?
- We know that seed germinates into plants. This means that plants also produce their young ones. Seed germination is one of the ways of doing this.
- Are there any other ways in which plants produce their young ones?

Activity-6 : Response to stimulus

Discuss with your friend how would we respond in the conditions given in table-5.

Table 5

Stimulus	Response
When you step on a sharp object	
Touch a flame or fire	
Touch ice-cream	Blink, ...
See a bright light	
Get bitten by an ant or mosquito	Mouth waters, ...
When you hear the word 'tamarind'	

All living beings possess the characteristic feature of response to stimulus.

- Do other animals also respond to stimuli like us?
- Do plants respond to stimuli like animals?
A famous Indian scientist Jagadeesh Chandrabose proved that plants have life and they respond to stimulus. We can
understand the responses of plants through the following observations. Some flowers bloom in day times whereas some others bloom at nights. They respond to light. Many trees shed leaves in autumn. They respond to temperature.

Activity-7 : Atti-Patti

It is very interesting to observe a touch me not (Atti-patti or mimosa)plant. Touch it. Record your observations.

The human heart creates enough pressure to squirt blood 30 feet distance.

 ジ باتقّ
ك行楊 （Response to stimulus）

مشغغه－6：
 پ．

 جبول－5

多

（c） $4^{6 *}$

（c）

How does this plant respond when you touch it? How much time does it take to return to its previous position? This observation explains that plants also respond to stimulus.

Fig 5 : Touch-me not plant
Activity-8: Response to light by earthworms

Get an earthworm from nearby moist soil. Take a glass jar. Cover half of the glass jar with black paper as shown in Fig. 6. Put some soil in the jar and put the earthworm in the jar. Close the jar with a lid that contains small holes, to allow air into the jar. When earthworm crawls out of the covered portion, shed some light on the jar. Then take a look at what happens?

When we shed light on the earthworm, it moves to the dark portion. It seems that earthworms show response to stimulus, in this case light.

Seeds - Living or not

Plants are produced by seeds. We know that plant is a living being. Can we say that seeds are also living? Let us discuss that characteristics of living beings that seeds have.

- Does a seed take in food? From where?
- Will seeds die if they are stored for a longer time?
- What happens when a seed is sown in soil?

Seeds germinate and turn into a whole plant. So we can say that seed is a living thing. Can you think of any way of deciding whether dry seeds are living?
(Fig-(6a))

Fig. 6(a)

Bacteria can survive at even at highest and lowest temperatures.

 جانرارونكَ
ك

ج

 ك10Cl

رجات بـب؟

 حت

اظهاركر ت بي -

;"

 ؤاوِي我

Fig. 7

Venkatesh noticed that growth, breathing, excretion, taking food, giving birth to young ones, response to stimulus, movement are some of the characteristics of living beings. He also observed that these are not common among all living organisms. But, non-living things do not possess these characters. He observed that people depend upon both living and nonliving things.

Generally we are told that the plant is dead when it has dry leaves and stem. If an animal doesn't show living characteristics, we can say that the animal is dead. Is a dead plant or a dead animal non-living?

Dead plants, animals or any other living beings decompose to form non-living constituents. So we can't say dead things are non-living things. They are intermediate things between living and non-living things.

Living things under a microscope
The letters in a book are quiet small. What do old people do to read books? Children frequently play with magnifying lens. When we see objects through magnifying lens they seem to be bigger than their actual size.

Activity-9: Prepare your own magnifier

 Collect an used electric bulb. Remove its filament. Fill water in half of the bulb. See a book through this bulb. Do the letters in the book seem bigger?Are all things around us visible to us? Name some small animals that you see. Can we see antenna of ants and small insects with our naked eye? When you touch flowers, a yellow colour powder sticks your fingers. If you want to know what it is, what can you do?

We cannot see all things around us with our naked eye. Because those things like antenna of ants, yellow powder of flowers are very small. In the living world

Some moulds are used in cheese manufacturing. It is called as fermentation.

7
ع كr.

 بانرارب؟

 ليانمرهو

there are some things that are not visible. We cannot see them. We can see those small organisms under a microscope. Living beings that we can see only under the microscope are called micro-organisms. Let us try to understand about a microscope and then use it for observing some micro-organisms.
What is a microscope?

Fig 8

Microscope is an instrument with the help of which we are able to see minute things that we cannot see with our naked eyes. It works like a magnifying lens but it is much more powerful.
Basically, there are two components in a microscope - 1) the structural component 2) the visual components

Structural components are the head/body, base and arm. Visual components are eyepiece, objective, nosepiece, coarse and fine adjustment knobs, stage, aperture etc.

Fig. 8 shows a labeled diagram of a compound microscope. Taking its help
identify different parts of microscope in your school.

Now we want to see some micro-organism. Where can we find them?

Activity-10: Bread Mould

Generally our elder say that we should not put wet spoons in pickle jars. Why do they say this? When you put wet spoons in a pickle jar, the pickle will spoil. What happens when you pack bread or vegetable and keep for a couple of days? You observe that they become rotten and they emit a foul smell. We can see thin, thread like grey colour substance. After some days this grey colour substance turns black.

Bacteria are found everywhere - in air, water, soil, animals, people and food.
 عرّ~ (Objective Lens)،

آي
 كياجبا
ورנثّث(Microscope) كيا

 هرّس ط 6 مكت

 (اور بإز) (Base) (Body)

If you touch this material black colour substance sticks to your fingers. Collect this rotten material and observe it under a microscope. Note your observation and discuss with your friends. Draw the structures seen by you under the microscope.

These tiny thread like structure are commonly called mould. Can we say that mould is also living?
The mould that develops on spoiled material is able to produce new mould. It grows. So we can say the mould is also living.

We all know that cows gives us milk. So they are useful. Do micro-organisms help us in any way?

- Why is idly batter prepared the day before?
- Why do we add little amount of butter milk to milk to get curd?

Activity-11: Let us see bacteria

Take the watery substance in curd. Put a drop of this substance on a glass slide. Cover it gently with another slide. Observe this under a microscope. Note your observations. Draw a picture of what you see under the microscope.

The micro-organisms that you see under the microscope are called bacteria. Bacteria are in different shapes. The bacterium that you

Fig. 10 see in curd is helpful. This bacteria named lactobacillus helps to convert milk into curd.

Are bacteria harmful?

Discuss with your teacher how bacteria are harmful. Some bacteria cause diseases in human beings as well as animals and birds. These bacteria spread from one person to the other and cause various types of diseases. They spread all over the world. There is no place in the world without bacteria.
When you suffer from a disease, the doctor advises you to take boiled water. Are there micro-organisms in water? Is the water that you drink regularly, pure?

Activity-12: Micro organisms in water

Collect water samples from a pond, well and borewell. Keep them in separate glasses. Put a drop of water on a slide. Keep another slide on it. Observe under microscope. What type of microorganisms do you see in water samples? Do all water samples have the same type of micro-organisms?

> Microscope was invented by dutch scientists. Zacharias Janssen and his father Hans Martens in the year 1590 A.D.

خروريّن
وا
اورا پ夫ش

بيكيم

, با بح

9 \%

 *

"
كر ت با

皆

Is there any water without microorganisms? Which water contains larger number of micro-organisms? Draw what you have observed. Describe the shapes of the micro-organisms.

- Which water contains larger number of micro-organisms? Why?
- What difference do you find in the appearance of micro-organisms in pond water and bore well water?

Fig. 11
Thus we see that micro-organisms are present everywhere, although they are not visible to naked eyes. From our activities, we could see only a few of them. But there is a vast world of micro-organisms and they are all part of the living world.

Keywords

Living things, non-living things, growth, breathing, excretion, response, stimulus, movement, micro-organisms, microscope

What we have learnt?

- There are living and non-living things around us.
- When living things lose their life they become dead.
- Dead is an intermediate stage between living and non-living things.
- Dead material decomposes to form non-living things.
- Living things possess characteristics like growth, breathing, excretion, movement, response to stimulus and giving birth to young ones.
- Among living things, plants and trees can't move like animals.
- Seed is also a living thing but it doesn't have all characteristics of the living world.
- We can see minute things under a microscope.

Improve your learning

1. List out common characteristics of living things.
2. Why do cockroaches come out of their places when lights are switched off?
3. Which characteristics are same in both living and non-living things?
4. Which of the following are derived from living things : sugar, coconut oil, pen, rice, fan, omelet, bus, wooden chair, garland, mango, clothes, fruit juice.

Mushrooms we use as food are also fungi.

 أنكا放 ，

گُّ؟ اوريون؟

动
－
约
－二و
號
إِ
品

، هوثّ بٌ－

بوك بٌ
كليرىالثأا：

共
إ．
5. How can you say that a tree is living even though it doesn't move?
6. How would you use the microscope present in your school lab?
7. Thread like structure developed in bread are
8. Which of the following is not a response to stimulus :
a) Feeling cold by touching ice.
b) Feeling the weight of carrying a bag of books.
c) Scratching the skin at the place of ant bite.
d) Closing eyes immediately after seeing bright light.
9. Collect sweet potato, bottle, salt, and water. Take a bottle full of water and add salt, then put the sweet potato inside the bottle. Observe for a few days. What happens? Note your observations.

10. Venkatesh argues with his friend Tanveer about "seed is living" Think. What questions does Tanveer ask?
11. What will happen if there is no stomata in leaves? Write your predictions.
12. Write down the steps of the experiment that you did in the lab to observe micro-organisms in pond water.
13. How do you feel when you touch 'Touch me not' plant? Write your feelings.
14. Prepare Venn diagram to represent living and non living characteristics of dog and tree.

15. Do you think both living and non living things are necessary for our environment. Why?
16. Collect information from your school library / internet about Sir J.C. Bose who invented response to stimulus in plants.

The right foundation is to learn science in order to preserve the bio-diversity that benefits all living things on earth.

- Amartya Sen

Algae are of great use in sewage water treatment plants.

6.

7
-

(a
(b

ايكس تالو، بؤن،
.
. 13

14. ايك ورخت اور عُنّ ع جانراراور ينير جانرار
 ،

- تياريّي (Venn diagram)

غيرجانراروونو

Free Distribution by Govt. of T.S. 2022-23

Learning Outcomes

The learner....

- Identifies materials and organisms, such as, plant fibres, flowers, on the basis of observable features i.e., appearance, texture, function, aroma, etc. Differentiates materials and organisms, such as, tap and fibrous roots, electrical conductors and insulators, on the basis of their properties, structure and functions.
Classifies materials, organisms and process based on observable properties e.g. materials as soluble, insoluble transparent, transluced and opeque; of habitat as biotic and abiotic.
Conducts simple investigations to seek answers to quires, e.g., what are the does a freely suspended magnet align in a particular direction?

Relates process and phenomenon with causes, e.g. deficiency diseases with diet adaptations of animals and animals and plants with their habitats.
Explains processes and phenomenon, e.g. processing of plant fibres movement in plants and animals; formation of shadows reflection of light from plane mirror, Measures physical quantities and express in SI units e.g. length, mass, temperature etc.
Draws labelled diagrams / flow charts of organisms and processes e.g., parts of flower, joints, fillration, water cycle etc.

Constructs model using materials from surroundings and explains their working e.g., pinhole camera, periscope, electric torch etc.
Applies learning of scientific concepts in dag-to-dag life e.g., selecting food items for a balanced diet separating materials selecting season appropriate facries; using canpass needle for finding directions; suggesting ways to cope with heaving rain/drought etc.
Makes efforts to protect environment, e.g. minimising wastage of food, water, electricity and generation of waste, spreading awareness for rain water harvesting; care for plants etc.
Exhibits value of honest, objectivity, cooperation, freedom from fear and prejudices.

[^0]: 'Banana oil' is made from petroleum.

[^1]: 84% of a raw apple and 96% of a raw cucumber is water.

[^2]: The Danyang-Kunshan Grand Bridge is the world's longest bridge.
 It is a 164.8 kilometres $(102.4 \mathrm{mi})$ long

[^3]: - Do you all have the same readings of measurements?

[^4]: Nanometre - A metric unit which equals to a $1 / 1,000,000,000$ of a meter

[^5]: When sunlight is intercepted by a drop of water in the atmosphere it gives RAINBOW

[^6]: Light takes 1.255 seconds to get from the Earth to the Moon.

[^7]: Sunlight can reach a depth of around 80 metres (262 feet) in the ocean.

